Random Number Selection in Self-assembly | SpringerLink
Skip to main content

Random Number Selection in Self-assembly

  • Conference paper
Unconventional Computation (UC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5715))

Included in the following conference series:

Abstract

We investigate methods for exploiting nondeterminism inherent within the Tile Assembly Model in order to generate uniform random numbers. Namely, given an integer range {0,...,n − 1}, we exhibit methods for randomly selecting a number within that range. We present three constructions exhibiting a trade-off between space requirements and closeness to uniformity.

The first selector selects a random number with probability Θ(1/n) using O(log2 n) tiles. The second selector takes a user-specified parameter that guarantees the probabilities are arbitrarily close to uniform, at the cost of additional space. The third selector selects a random number with probability exactly 1/n, and uses no more space than the first selector with high probability, but uses potentially unbounded space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D.: Running time and program size for self-assembled squares. In: STOC 2001: Proceedings of the thirty-third annual ACM Symposium on Theory of Computing, pp. 740–748. ACM, New York (2001)

    Chapter  Google Scholar 

  2. Becker, F., Rapaport, I., Rémila, E.: Self-assembling classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Chen, H.-L., Goel, A.: Error free self-assembly with error prone tiles. In: Proceedings of the 10th International Meeting on DNA Based Computers (2004)

    Google Scholar 

  4. Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Doty, D.: Randomized self-assembly for exact shapes, Tech. Report 0901.1849, Computing Research Repository (2009)

    Google Scholar 

  6. Fujibayashi, K., Zhang, D.Y., Winfree, E., Murata, S.: Error suppression mechanisms for dna tile self-assembly and their simulation. Natural Computing (to appear)

    Google Scholar 

  7. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Knuth, D.E.: The art of computer programming. Seminumerical algorithms, vol. 2. Addison-Wesley, Reading (1997)

    MATH  Google Scholar 

  9. Lathrop, J.I., Lutz, J.H., Patitz, M.J., Summers, S.M.: Computability and complexity in self-assembly. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 349–358. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410, 384–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Majumder, U., LaBean, T.H., Reif, J.H.: Activatable tiles: Compact, robust programmable assembly and other applications. In: Garzon, M.H., Yan, H. (eds.) DNA 2007. LNCS, vol. 4848, pp. 15–25. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Patitz, M.J., Summers, S.M.: Self-assembly of decidable sets. In: Calude, C.S., Costa, J.F., Freund, R., Oswald, M., Rozenberg, G. (eds.) UC 2008. LNCS, vol. 5204, pp. 206–219. Springer, Heidelberg (2008)

    Google Scholar 

  13. Patitz, M.J., Summers, S.M.: Self-assembly of discrete self-similar fractals (extended abstract). In: Proceedings of The Fourteenth International Meeting on DNA Computing, Prague, Czech Republic, June 2-6 (2008) (to appear)

    Google Scholar 

  14. Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly, Ph.D. thesis, University of Southern California (December 2001)

    Google Scholar 

  15. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: STOC 2000: Proceedings of the thirty-second annual ACM Symposium on Theory of Computing, pp. 459–468. ACM, New York (2000)

    Chapter  Google Scholar 

  16. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biology 2(12) (2004)

    Google Scholar 

  17. Seeman, N.C.: Nucleic-acid junctions and lattices. Journal of Theoretical Biology 99, 237–247 (1982)

    Article  Google Scholar 

  18. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled patterns. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 305–324. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM Journal on Computing 36(6), 1544–1569 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. LaBean, T.H., Majumder, U., Sahu, S., Reif, J.H.: Design and simulation of self-repairing DNA lattices. In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 195–214. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. von Neumann, J.: Various techniques for use in connection with random digits. In: von Neumann’s Collected Works, vol. 5, pp. 768–770. Pergamon, Oxford (1963)

    Google Scholar 

  22. Winfree, E.: Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of Technology (June 1998)

    Google Scholar 

  23. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D. (2009). Random Number Selection in Self-assembly. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds) Unconventional Computation. UC 2009. Lecture Notes in Computer Science, vol 5715. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03745-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03745-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03744-3

  • Online ISBN: 978-3-642-03745-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics