Abstract
The perturbation theory is important in applications and theoretical investigations as well. Here we investigate three groups of perturbation problems which are related to computational methods of importance. The first section is related to the solution of linear systems of equations and a posteriori error estimates of the computed solution. The second section gives optimal bounds for the perturbations of LU factorizations. The final section gives a sharp upper bound for the eigenvalue perturbation of general matrices, which is better than the classical result of Ostrowski. We also show two applications of this result. The first application gives a sharp perturbation bound for the zeros of polynomials. The second application is related to a result of Edelman and Murakami on the backward stability of companion matrix type polynomial solvers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Auchmuty, G.: A Posteriori Error Estimates for Linear Equations. Numerische Mathematik 61, 1–6 (1992)
Barrlund, A.: Perturbation Bounds for the LDL H and LU Decompositions. BIT 31, 358–363 (1991)
Baumgartel, H.: Analytic Perturbation Theory for Matrices and Operators. Birkhauser Verlag, Basel (1985)
Beauzamy, B.: How the Roots of a Polynomial Vary with its Coefficients: a Local Quantitative Result. Canadian Mathematical Bulletin 42(1), 3–12 (1999)
Bhatia, R.: Matrix Factorizations and their Perturbations. Linear Algebra and its Applications 197,198, 245–276 (1994)
Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues. SIAM, Philadelphia (2007)
Bhatia, R., Elsner, L., Krause, G.: Bounds for the Variation of the Roots of a Polynomial and the Eigenvalues of a Matrix. Linear Algebra and its Applications 142, 195–209 (1990)
Chang, X.-W., Paige, C.: On the Sensitivity of the LU Factorization. BIT 38, 486–501 (1998)
Chang, X.-W., Paige, C.: Sensitivity Analyses for Factorizations of Sparse or Structured Matrices. Linear Algebra and its Applications 284, 53–71 (1998)
Chang, X.-W., Paige, C., Stewart, G.W.: New Perturbation Analyses for the Cholesky Factorization. IMA J. Numer. Anal. 16, 457–484 (1996)
Chu, E.K.: Generalization of the Bauer-Fike Theorem. Numerische Mathematik 49, 685–691 (1986)
Demmel, J.W.: On Condition Numbers and the Distance to the Nearest Ill-posed Problem. Numerische Mathematik 51, 251–289 (1987)
Demmel, J., Diament, B., Malajovich, G.: On the Complexity of Computing Error Bounds. Foundations of Computational Mathematics 1, 101–125 (2001)
Drmač, Z., Omladič, M., Veselič, K.: On the Perturbation of the Cholesky Factorization. SIAM J. Matrix. Anal. Appl. 15, 1319–1332 (1994)
Edelman, A., Murakami, H.: Polynomial Roots from Companion Matrix Eigenvalues. Math. Comp. 64(210), 763–776 (1995)
Galántai, A.: Perturbation Theory for Full Rank Factorizations, Quaderni DMSIA, 1999/40. University of Bergamo, Bergamo (1999)
Galántai, A.: Componentwise perturbation bounds for the LU, LDU, and LDL T decompositions. Mathematical Notes, Miskolc 1, 109–118 (2000)
Galántai, A.: A Study of Auchmuty’s Error Estimate. Computers and Mathematics with Applications 42, 1093–1102 (2001)
Galántai, A.: Perturbations of Triangular Matrix Factorizations. Linear and Multilinear Algebra 51, 175–198 (2003)
Galántai, A.: Perturbation Bounds for Triangular and Full Rank Factorizations. Computers and Mathematics with Applications 50, 1061–1068 (2005)
Galántai, A., Hegedűs, C.J.: Perturbation Bounds for Polynomials. Numerische Mathematik 109, 77–100 (2008)
Galántai, A., Hegedűs, C.: Hyman’s Method Revisited. Journal of Computational Mathematics and Applied Mathematics 226, 246–258 (2009)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore (1993)
Higham, N.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)
Hogben, L.: Handbook of Linear Algebra. Chapman & Hall/CRC (2007)
Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)
Kahan, W.M.: Numerical Linear Algebra. Canadian Mathematical Bulletin 9, 757–801 (1966)
Kahan, W.: Conserving Confluence Curbs Ill-Condition, technical report, AD-766 916, Computer Science, University of California, Berkeley (1972)
Kato, T.: Perturbation Theory for Linear Operators. Springer, Heidelberg (1966)
von Neumann, J., Goldstine, H.: Numerical Inverting of Matrices of High Order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947)
Nievergelt, Y.: Numerical Linear Algebra on the HP-28 or How to Lie with Supercalculators. American Mathematical Monthly, 539–544 (1991)
Ostrowski, A.: Recherches sur la méthode de Gräffe et les zeros des polynômes et des series de Laurent. Acta Math. 72, 99–257 (1940)
Ostrowski, A.: Über die Stetigkeit von charakteristischen Wurzeln in Abhängigkeit von den Matrizenelementen. Jahresber. deut. Mat.-Ver. 60, 40–42 (1957)
Prasolov, V.V.: Problems and Theorems in Linear Algebra. American Mathematical Society, Providence (1994)
Rump, S.M.: A Class of Arbitrary ill Conditioned Floating-Point Matrices. SIAM J. Matrix Anal. Appl. 12, 645–653 (1991)
Stewart, G.W.: On the perturbation of LU, Cholesky and QR factorizations. SIAM J. Matrix. Anal. Appl. 14, 1141–1145 (1993)
Stewart, G.W.: On the perturbation of LU and Cholesky factors. IMA J. Numer. Anal. 17, 1–6 (1997)
Stewart, G., Sun, J.: Matrix Perturbation Theory. Academic Press, London (1990)
Sun, J.-G.: Perturbation Bounds for the Cholesky and QR Factorizations. BIT 31, 341–352 (1991)
Sun, J.-G.: Componentwise Perturbation Bounds for some Matrix Decompositions. BIT 32, 702–714 (1992)
Sun, J.-G.: Rounding-Error and Perturbation Bounds for the Cholesky and LDL T Factorizations. Linear Algebra and its Applications 173, 77–97 (1992)
Toh, K., Trefethen, L.N.: Pseudozeros of Polynomials and Pseudospectra of Companion Matrices. Numerische Mathematik 68, 403–425 (1994)
Turing, A.: Rounding-Off Errors in Matrix Processes. Quart. J. Mech. Appl. Math. 1, 287–308 (1948)
Watkins, D.S.: Fundamentals of Matrix Computations. John Wiley & Sons, Chichester (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Galántai, A. (2009). Problems and Results in Matrix Perturbation Theory. In: Rudas, I.J., Fodor, J., Kacprzyk, J. (eds) Towards Intelligent Engineering and Information Technology. Studies in Computational Intelligence, vol 243. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03737-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-03737-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03736-8
Online ISBN: 978-3-642-03737-5
eBook Packages: EngineeringEngineering (R0)