Abstract
In this article, we discuss the way to derive connected operators based on the component-tree concept and devoted to multi-value images. In order to do so, we first extend the grey-level definition of the component-tree to the multi-value case. Then, we compare some possible strategies for colour image processing based on component-trees in two application fields: colour image filtering and colour document binarisation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1003–1013 (2008)
Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Computer Vision and Image Understanding 107(1-2), 56–73 (2007)
Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)
Barnett, V.: The ordering of multivariate data. Journal of the Royal Statistical Society: Series A (Statistics in Society) 139(3), 318–354 (1976)
Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component-tree computation with application to pattern recognition in astronomical imaging. In: Proc. of ICIP 2007, vol. 4, pp. 41–44 (2007)
Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)
Chen, L., Berry, M.W., Hargrove, W.W.: Using dendronal signatures for feature extraction and retrieval. International Journal of Imaging Systems and Technology 11(4), 243–253 (2000)
Evans, A.N., Gimenez, D.: Extending connected operators to colour images. In: Proc. of ICIP 2008, pp. 2184–2187 (2008)
Garrido, L., Salembier, P., Garcia, D.: Extensive operators in partition lattices for image sequence analysis. Signal Processing: Special issue on Video Sequence Segmentation 66(2), 157–180 (1998)
Gimenez, D., Evans, A.N.: An evaluation of area morphology scale-spaces for colour images. Computer Vision and Image Understanding 110(1), 32–42 (2008)
Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 62(3), 326–346 (1995)
Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)
Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 392–405. Springer, Heidelberg (2000)
Meyer, F.: From connected operators to levelings. In: Mathematical Morphology and its Applications to Image and Signal Processing (Proc. of ISMM 1998), pp. 191–198. Kluwer, Dordrecht (1998)
Mosorov, V.: A main stem concept for image matching. Pattern Recognition Letters 26(8), 1105–1117 (2005)
Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Proc. ISMM 2007, pp. 239–250 (2007)
Naegel, B., Wendling, L.: Document binarization based on connected operators. In: Proc. ICDAR 2009 (to appear, 2009)
Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for recognition of ancient graphical drop caps. In: VISAPP 2009, vol. 2, pp. 297–302 (2009)
Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15(11), 3531–3539 (2006)
Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)
Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9, 561–576 (2000)
Titterington, D.M.: Estimation of correlation coefficients by ellipsoid trimming. Appl. Stat. 27(3), 227–234 (1978)
Vincent, L.: Grayscale area openings and closings, their efficient implementations and applications. In: Proc. EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, pp. 22–27 (1993)
Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the Max-Tree representation. IEEE Trans. Image Proc. 16(12), 2943–2952 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Naegel, B., Passat, N. (2009). Component-Trees and Multi-value Images: A Comparative Study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-03613-2_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03612-5
Online ISBN: 978-3-642-03613-2
eBook Packages: Computer ScienceComputer Science (R0)