Component-Trees and Multi-value Images: A Comparative Study | SpringerLink
Skip to main content

Component-Trees and Multi-value Images: A Comparative Study

  • Conference paper
Mathematical Morphology and Its Application to Signal and Image Processing (ISMM 2009)

Abstract

In this article, we discuss the way to derive connected operators based on the component-tree concept and devoted to multi-value images. In order to do so, we first extend the grey-level definition of the component-tree to the multi-value case. Then, we compare some possible strategies for colour image processing based on component-trees in two application fields: colour image filtering and colour document binarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alajlan, N., Kamel, M.S., Freeman, G.H.: Geometry-based image retrieval in binary image databases. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(6), 1003–1013 (2008)

    Article  Google Scholar 

  2. Angulo, J.: Morphological colour operators in totally ordered lattices based on distances: Application to image filtering, enhancement and analysis. Computer Vision and Image Understanding 107(1-2), 56–73 (2007)

    Article  Google Scholar 

  3. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognition 40(11), 2914–2929 (2007)

    Article  MATH  Google Scholar 

  4. Barnett, V.: The ordering of multivariate data. Journal of the Royal Statistical Society: Series A (Statistics in Society) 139(3), 318–354 (1976)

    Article  MathSciNet  Google Scholar 

  5. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component-tree computation with application to pattern recognition in astronomical imaging. In: Proc. of ICIP 2007, vol. 4, pp. 41–44 (2007)

    Google Scholar 

  6. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Computer Vision and Image Understanding 64(3), 377–389 (1996)

    Article  Google Scholar 

  7. Chen, L., Berry, M.W., Hargrove, W.W.: Using dendronal signatures for feature extraction and retrieval. International Journal of Imaging Systems and Technology 11(4), 243–253 (2000)

    Article  Google Scholar 

  8. Evans, A.N., Gimenez, D.: Extending connected operators to colour images. In: Proc. of ICIP 2008, pp. 2184–2187 (2008)

    Google Scholar 

  9. Garrido, L., Salembier, P., Garcia, D.: Extensive operators in partition lattices for image sequence analysis. Signal Processing: Special issue on Video Sequence Segmentation 66(2), 157–180 (1998)

    Article  MATH  Google Scholar 

  10. Gimenez, D., Evans, A.N.: An evaluation of area morphology scale-spaces for colour images. Computer Vision and Image Understanding 110(1), 32–42 (2008)

    Article  Google Scholar 

  11. Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 62(3), 326–346 (1995)

    Article  Google Scholar 

  12. Jones, R.: Connected filtering and segmentation using component trees. Computer Vision and Image Understanding 75(3), 215–228 (1999)

    Article  Google Scholar 

  13. Mattes, J., Demongeot, J.: Efficient algorithms to implement the confinement tree. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 392–405. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Meyer, F.: From connected operators to levelings. In: Mathematical Morphology and its Applications to Image and Signal Processing (Proc. of ISMM 1998), pp. 191–198. Kluwer, Dordrecht (1998)

    Google Scholar 

  15. Mosorov, V.: A main stem concept for image matching. Pattern Recognition Letters 26(8), 1105–1117 (2005)

    Article  Google Scholar 

  16. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: methodology and application to dermatological imaging. In: Proc. ISMM 2007, pp. 239–250 (2007)

    Google Scholar 

  17. Naegel, B., Wendling, L.: Document binarization based on connected operators. In: Proc. ICDAR 2009 (to appear, 2009)

    Google Scholar 

  18. Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for recognition of ancient graphical drop caps. In: VISAPP 2009, vol. 2, pp. 297–302 (2009)

    Google Scholar 

  19. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  20. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Proc. 7, 555–570 (1998)

    Article  Google Scholar 

  21. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation and information retrieval. IEEE Trans. Image Proc. 9, 561–576 (2000)

    Article  Google Scholar 

  22. Titterington, D.M.: Estimation of correlation coefficients by ellipsoid trimming. Appl. Stat. 27(3), 227–234 (1978)

    Article  MATH  Google Scholar 

  23. Vincent, L.: Grayscale area openings and closings, their efficient implementations and applications. In: Proc. EURASIP Workshop on Mathematical Morphology and its Applications to Signal Processing, pp. 22–27 (1993)

    Google Scholar 

  24. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the Max-Tree representation. IEEE Trans. Image Proc. 16(12), 2943–2952 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Naegel, B., Passat, N. (2009). Component-Trees and Multi-value Images: A Comparative Study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds) Mathematical Morphology and Its Application to Signal and Image Processing. ISMM 2009. Lecture Notes in Computer Science, vol 5720. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03613-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03613-2_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03612-5

  • Online ISBN: 978-3-642-03613-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics