New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions | SpringerLink
Skip to main content

New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions

  • Conference paper
Contemporary Computing (IC3 2009)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 40))

Included in the following conference series:

Abstract

This paper introduces a new fuzzy c-mean objective function called Kernel induced Fuzzy C-Means based Gaussian Function for the purpose of segmentation of brain medical images. It obtains effective methods for calculating memberships and updating prototypes by minimizing the new objective function of Gaussian based fuzzy c-means. The performance of proposed algorithm has been tested with synthetic image and then it has been implemented for segmenting the brain [18] medical images to reduce the inhomogeneities and to allow the labeling of a pixel (voxel) to be influenced by the labels in its immediate neighborhood. Also this paper compares the results of proposed method with the results of existing basic Fuzzy C-Means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A.A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. on Medical Imaging 21, 193–199 (2002)

    Article  PubMed  Google Scholar 

  2. Al-Sultan, K.S., Selim, S.Z.: A Global Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 26(9), 1357–1361 (1993)

    Article  Google Scholar 

  3. Al-Sultan, K.S., Fedjki, C.A.: A Tabu Search-based Algorithm for the Fuzzy Clustering Problem. Pattern Recognition 30(12), 2023–2030 (1997)

    Article  Google Scholar 

  4. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  5. Bezdek, J.C., Pal, S.K. (eds.): Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)

    Google Scholar 

  6. Bezdek, J.C., Hall, L.O., Clarke, L.P.: Review of MR image segmentation techniques using pattern recognition. Med. Phys. 20, 1033–1048 (1993)

    Article  CAS  PubMed  Google Scholar 

  7. Brand, M.E., Bohan, T.P., Kramer, L.A.: Estimation of CSF and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. Comput. Med. Imaging Graph. 18, 25–34 (1994)

    Article  Google Scholar 

  8. Carvalho, B.M., Gau, J.C., Herman, G.T., Kong, Y.: Algorithms for Fuzzy Segmentation. Pattern Analysis & Applications 2(1), 73–81 (1999)

    Article  Google Scholar 

  9. Clark, M.C., Hall, L.O., Goldgof, D.B., Velthuizen, R., Murtagh, F.R., Silbiger, M.S.: Automatic tumor-segmentation using knowledge-based techniques. IEEE Transactions on Medical Imaging 117, 187–201 (1998)

    Article  Google Scholar 

  10. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)

    Article  Google Scholar 

  11. Fletcher-Heath, L.M., Hall, L.O., Goldgof, D.B., Murtagh, F.R.: Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artifical Intelligence in Medicine 21, 43–63 (2001)

    Article  CAS  Google Scholar 

  12. Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. IEEE Trans. Neural Networks. 3(5), 672–682 (1992)

    Article  CAS  PubMed  Google Scholar 

  14. Xue, J.-H., Pizurica, A., Philips, W., Kerre, E., Walle, R.V., Lemahieu, I.: An Integrated Method of Adaptive Enhancement for Unsupervised Segmentation of MRI Brain Images. Pattern Recognition Letters 24(15), 2549–2560 (2003)

    Article  Google Scholar 

  15. Krishnan, N., Nelson Kennedy Babu, C.V., Joseph Rajapandian, V., Richard Devaraj, N.: A Fuzzy Image Segmentation using Feedforward Neural Networks with Supervised Learning. In: Proceedings of the International Conference on Cognition and Recognition, pp. 396–402

    Google Scholar 

  16. Kwon, M.J., Han, Y.J., Shin, I.H., Park, H.W.: Hierarchical fuzzy segmentation of brain MR images. Int. J. Imaging Systems and Technology. 13, 115–125 (2003)

    Article  Google Scholar 

  17. Li, X., Li, L., Lu, H., Chen, D., Liang, Z.: Inhomogeneity correction for magnetic resonance images with fuzzy C-mean algorithm. In: Proc. SPIE, vol. 5032, pp. 995–1005 (2003)

    Google Scholar 

  18. Li, C.L., Goldgof, D.B., Hall, L.O.: Knowledge-based classification and tissue labeling of MR images of human brain. IEEE Trans. Med. Imag. 12(4), 740–750 (1993)

    Article  CAS  Google Scholar 

  19. Liew, A.W.C., Leung, S.H., Lau, W.H.: Fuzzy image clustering incorporating spatial continuity. IEE Proc. Visual Image Signal Process. 147, 185–192 (2000)

    Article  Google Scholar 

  20. Clark, M.C., Hall, L.O., Goldgof, D.B., Clarke, L.P., Velthuizen, R.P., Silbigger, M.S.: MRI Segmentation using fuzzy clustering Techniques. IEEE Engineering in Medicine and Biology 13(5), 730–742 (1994)

    Article  Google Scholar 

  21. Moussaoui, A., Benmahammed, K., Ferahta, N., Chen, V.: A New MR Brain Image Segmentation Using an Optimal Semisupervised Fuzzy C-means and pdf Estimation. Electronic Letters on Computer Vision and Image Analysis 5(4), 1–11 (2005)

    Google Scholar 

  22. Noordam, J.C., van den Broek, W.H.A.M., Buydens, L.M.C.: Geometrically guided fuzzy C-means clustering for multivariate image segmentation. In: Proc. Int. Conf. on Pattern Recognition, vol. 1, pp. 462–465 (2000)

    Google Scholar 

  23. Pham, D.L., Prince, J.L.: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans. Medical Imaging. 18, 737–752 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. on Fuzzy Systems. 7(4), 377–393 (1999)

    Article  Google Scholar 

  25. Ruspini, E.H.: A New Approach to Clustering. Information and Control 15(1), 22–32 (1969)

    Article  Google Scholar 

  26. Ruspini, E.H.: Numerical methods for fuzzy clustering. Inform. Sci. 2, 319–350 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kannan, S.R., Sathya, A., Ramathilagam, S., Pandiyarajan, R. (2009). New Robust Fuzzy C-Means Based Gaussian Function in Classifying Brain Tissue Regions. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03547-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03546-3

  • Online ISBN: 978-3-642-03547-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics