Abstract
India is a multi-lingual multi script country, where eighteen official scripts are accepted and have over hundred regional languages. In this paper we propose a zone based hybrid feature extraction algorithm scheme towards the recognition of off-line handwritten numerals of south Indian scripts. The character centroid is computed and the image (character/numeral) is further divided in to n equal zones. Average distance and Average angle from the character centroid to the pixels present in the zone are computed (two features). Similarly zone centroid is computed (two features). This procedure is repeated sequentially for all the zones/grids/boxes present in the numeral image. There could be some zones that are empty, and then the value of that particular zone image value in the feature vector is zero. Finally 4*n such features are extracted. Nearest neighbor classifier is used for subsequent classification and recognition purpose. We obtained 97.55 %, 94 %, 92.5% and 95.2 % recognition rate for Kannada, Telugu, Tamil and Malayalam numerals respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pal, U., Chaudhuri, B.B.: Indian Script Character recognition: A survey. Pattern Recognition 37, 1887–1899 (2004)
Anil, K.J., Taxt, T.: Feature Extraction Methods for Character Recognition-A Survey. Pattern Recognition 29(4), 641–662 (1996)
Majumdar, A., Chaudhuri, B.B.: Printed and handwritten Bangla numeral recognition using multiple classifier outputs. In: Proceedings of the first IEEE ICSIP 2006, vol. 1, pp. 190–195 (2006)
Abdur, R., Shuvabranta, S., Rahman, M., Sattar, A.: Recognition of conjunctive Bangla characters by artificial neural network. In: International Conference on Information and Communication Technology, pp. 96–99 (2007)
Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: Off line handwritten character recognition of Devanagiri Scripts. In: Ninth International Conference on Document Analysis as Recognition (ICDAR 2007), pp. 496–500 (2007)
Patil, P.M., Sontakke, T.R.: Rotation scale and translation invariant handwritten Devanagiri numeral character recognition using fuzzy neural network. Elsevier, Pattern Recognition 40, 2110–2117 (2007)
Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: A system for off-line Oriya handwritten character recognition using curvature feature. In: 10th International Conference on Information Technology, pp. 227–229. IEEE, Los Alamitos (2007)
Hanmandlu, M., Grover, J., Madasu, V.: Input fuzzy for the recognition of handwritten Hindi numeral. In: International Conference on Informational Technology, vol. 2, pp. 208–213 (2007)
Pujari, A.K., Dhanunjaya Naidu, C., Sreenivasa Rao, M., Jinaga, B.C.: An Intelligent character recognizer for Telugu scripts using multi resolution analysis and associative memory. Elsevier, Image vision Computing, 1221–1227 (2004)
Suresh, R.M., Arumugam, S.: Fuzzy technique based recognition of handwritten characters. Elsevier, Image Vision Computing 25, 230–239 (2007)
Lajish, V.L.: Handwritten character using gray- scale based state-space parameters and class modular neural network. In: IEEE International Conference on signal processing, Comunication and Networking, pp. 374–379 (2008)
Pal, U., Wakabayashi, T., Kimura, F.: Handwritten numeral recognition of six popular scripts. In: Ninth International conference on Document Analysis and Recognition ICDAR 2007, vol. 2, pp. 749–753 (2007)
Rajput, G.G., Hangarge, M.: Recognition of isolated handwritten Kannada numerals based on image fusion method. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 153–160. Springer, Heidelberg (2007)
Rajashekararadhya, S.V., Vanaja, R.: Isolated handwritten Kannada digit recognition: A novel approach. In: Proceedings of the International Conference on Cognition and Recognition, pp. 134–140 (2008)
Rajashekararadhya, S.V., Vanaja, R., Manjunath Aradhya, V.N.: Isolated handwritten Kannada and Tamil numeral recognition: A novel approach. In: First International Conference on Emerging Trends in Engineering and Technology ICETET 2008, pp. 1192–1195 (2008)
Rajashekararadhya, S.V., Vanaja, R.: Handwritten numeral recognition of three popular South Indian scripts: A novel approach. In: Proceedings of the second International Conference on information processing ICIP, pp. 162–167 (2008)
Rajashekararadhya, S.V., Vanaja, R.: Neural network based handwritten numeral recognition of Kannada and Telugu scripts. In: TENCON 2008, Hyderabad, pp. 1–5 (2008)
Gonzalez, R.C., Woods, R.E., Steven, L. (Eddins): Digital Image. In: Processing using MATLAB, Pearson Education, Dorling Kindersley, South Asia (2004)
Rajashekararadhya, S.V., Vanaja, R.: A novel zone based feature extraction algorithm for handwritten numeral recognition of four Indian scripts. Digital Technology Journal 2009 2, 41–51 (2009)
Bhattacharya, U., Chaudhuri, B.B.: Handwritten numeral databases of Indian scripts and multistage recognition of mixed numerals. IEEE Transaction on Pattern analysis and machine intelligence 31(3), 444–457 (2009)
Bhattacharya, U., Chaudhuri, B.B.: Databases for research on recognition of handwritten characters of Indian scripts. In: Proceedings of the 8th International conference on document analysis and recognition ICDAR 2005, Seoul, Korea, vol. II, pp. 789–793 (2005)
Chaudhuri, B.B.: A complete handwritten numeral database of Bangla – a major Indic script. In: Proceedings of the 10th International workshop on frontiers of handwriting recognition La Baule, France, pp. 379–784 (2006)
Bhattacharya, U., Chaudhuri, B.B.: A majority voting scheme for multiresolution recognition of hand-printed numerals. In: Proceedings of the 7th International conference on document analysis and recognition ICDAR 2003, Edinburgh, Scotland, pp. 789–793 (2005)
Wen, Y., Lu, Y., Shi, P.: Handwritten Bangla numeral recognition system and its application to postal automation. Pattern recognition 40(1), 99–107 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rajashekararadhya, S.V., Ranjan, P.V. (2009). Zone Based Hybrid Feature Extraction Algorithm for Handwritten Numeral Recognition of South Indian Scripts. In: Ranka, S., et al. Contemporary Computing. IC3 2009. Communications in Computer and Information Science, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03547-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-03547-0_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03546-3
Online ISBN: 978-3-642-03547-0
eBook Packages: Computer ScienceComputer Science (R0)