Is the World Linear? | SpringerLink
Skip to main content

Is the World Linear?

  • Chapter
Efficient Algorithms

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5760))

  • 2365 Accesses

Abstract

Super-resolution is the art of creating nice high-resolution raster images from given low-resolution raster images. Since “nice” is not a well-defined term in mathematics and computer science, we propose a linear model of the world that allows us, under certain conditions, to achieve perfect super-resolution for arbitrarily high resolution. For example, we may now create a larger-than-life picture of Kurt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acharya, T., Tsai, P.-S.: Computational foundations of image interpolation algorithms. ACM Ubiquity 8 (2007)

    Google Scholar 

  2. Atkins, C.B., Bouman, C.A., Allebach, J.P.: Optimal image scaling using pixel classification. In: Proceedings of the 2001 International Conference on Image Processing (ICIP 2001), vol. 3, pp. 864–867 (2001)

    Google Scholar 

  3. Baker, S., Kanade, T.: Limits on super-resolution and how to break them. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (CPVR 2000), vol. 2, pp. 372–379 (2000)

    Google Scholar 

  4. Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time reversal acoustics. Journal of the Acoustical Society of America 111, 230–248 (2002)

    Article  Google Scholar 

  5. Blu, T., Thévenaz, P., Unser, M.: Generalized interpolation: higher quality at no additional cost. In: Proceedings of the 1999 International Conference on Image Processing (ICIP 1999), vol. 3, pp. 667–671 (1999)

    Google Scholar 

  6. Candocia, F.M., Principe, J.C.: Superresolution of images with learned multiple reconstruction kernels. In: Guan, L., Kung, S.Y., Larsen, J. (eds.) Multimedia Image and Video Processing, ch. 4, pp. 219–243. CRC Press, New York (2000)

    Google Scholar 

  7. Corduneanu, A., Platt, J.C.: Learning spatially-variable filters for super-resolution of text. In: Proceedings of the 2010 International Conference on Image Processing (ICIP 2010), vol. 1, pp. 849–852 (2005)

    Google Scholar 

  8. Davis, L.: A survey of edge detection techniques. Computer Graphics and Image Processing 4, 248–270 (1975)

    Article  Google Scholar 

  9. Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with good reason. Computational Geometry: Theory and Applications 10, 289–303 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Farsiu, S., Elad, M., Milanfar, P.: A practical approach to super-resolution. In: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (2006) (invited paper)

    Google Scholar 

  11. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications, 56–65 (2002)

    Google Scholar 

  12. Friedman, T.L.: The World is Flat: A Brief History of the Twenty-First Century. Farrar, Strauss and Giroux (2005)

    Google Scholar 

  13. Irani, M., Peleg, S.: Super resolution from image sequences. In: Proceedings of the 10th International Conference on Pattern Recognition (ICPR 1990), vol. 2, pp. 115–120 (1990)

    Google Scholar 

  14. Jiang, Z., Wong, T.-T., Bao, H.: Practical super-resolution from dynamic video sequences. In: Proceedings of the 2003 IEEE Conference on Computation Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 549–554 (2003)

    Google Scholar 

  15. Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Transactions on Medical Imaging 18(11), 1049–1075 (1999)

    Article  Google Scholar 

  16. Lengauer, T., Mehlhorn, K.: The HILL system: a design environment for the hierarchical specification, compaction, and simulation of integrated circuit layouts. In: Penfield Jr., P. (ed.) Proceedings of the MIT VLSI Conference, Artech House, Inc. (1984)

    Google Scholar 

  17. Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Transactions on Image Processing 10(10), 1521–1527 (2001)

    Article  Google Scholar 

  18. Lin, Z., Shum, H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 83–97 (2004)

    Article  Google Scholar 

  19. Mehlhorn, K.: On the size of sets of computable functions. In: Proceedings of the 14th IEEE Symposium on Automata and Switching Theory, pp. 190–196 (1973)

    Google Scholar 

  20. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proceedings of the IEEE 90(3), 319–342 (2002)

    Article  Google Scholar 

  22. Mitra, B.: Gaussian-based edge-detection methods: a survey. IEEE Transactions on Systems, Man, and Cybernetics — Part C: Applications and Reviews 32(3) (2002)

    Google Scholar 

  23. Mueller, N., Lu, Y., Do, M.N.: Image interpolation using multiscale geometric representations. In: Proceedings of the 2007 SPIE Conference on Electronic Imaging (2007)

    Google Scholar 

  24. Price, J.R., Hayes III, M.H.: Optimal prefiltering for improved image interpolation. In: Proceedings of the 32nd Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 959–963 (1998)

    Google Scholar 

  25. Price, K.: Keith Price Bibliography: evaluation of edge detection algorithms (2009), http://www.visionbib.com/bibliography/edge235.html

  26. Raghupathy, A., Chandrachoodan, N., Liu, K.J.R.: Algorithm and VLSI architecture for high performance adaptive video scaling. IEEE MultiMedia 5(4), 489–502 (2003)

    Google Scholar 

  27. Sajjad, M., Khattak, N., Jafri, N.: Image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes. Proceedings of the World Academy of Science, Engineering and Technology 25, 88–97 (2007)

    Google Scholar 

  28. Shechtman, E.: Space-time super-resolution. Master’s thesis, Faculty of MAthematics and Computer Science, The Weizmann Institute of Science (2003)

    Google Scholar 

  29. Sun, J., Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: Proceedings of the 2007 IEEE Conference on Computation Vision and Pattern Recognition (CVPR 2007) (2007); Poster

    Google Scholar 

  30. Easy Thumbnails User Manual. Fookes Software, Switzerland (2001)

    Google Scholar 

  31. Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. In: Advances in Computer Vision and Image Processing, ch. 7, vol. 1, pp. 317–339. JAI Press, Greenwich (1984)

    Google Scholar 

  32. Turkowski, K.: Filters for common resampling tasks. In: Glassner, A.S. (ed.) Graphics Gems I, pp. 147–165. Academic Press, London (1990)

    Chapter  Google Scholar 

  33. Unser, M.: Sampling — 50 years after Shannon. Proceedings of the IEEE 88(4), 569–587 (2000)

    Article  Google Scholar 

  34. van Ouwerkerk, J.D.: A modular approach to image super-resolution algorithms. Ph.D. thesis, Dept. of Media and Knowledge Eng., Delft Univ. of Technology (2006)

    Google Scholar 

  35. Wittman, T.: Mathematical techniques for image interpolation, Oral exam paper (2005), http://www.math.umn.edu/~wittman/Poral2.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fleischer, R. (2009). Is the World Linear?. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03456-5_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03455-8

  • Online ISBN: 978-3-642-03456-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics