Abstract
Super-resolution is the art of creating nice high-resolution raster images from given low-resolution raster images. Since “nice” is not a well-defined term in mathematics and computer science, we propose a linear model of the world that allows us, under certain conditions, to achieve perfect super-resolution for arbitrarily high resolution. For example, we may now create a larger-than-life picture of Kurt.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acharya, T., Tsai, P.-S.: Computational foundations of image interpolation algorithms. ACM Ubiquity 8 (2007)
Atkins, C.B., Bouman, C.A., Allebach, J.P.: Optimal image scaling using pixel classification. In: Proceedings of the 2001 International Conference on Image Processing (ICIP 2001), vol. 3, pp. 864–867 (2001)
Baker, S., Kanade, T.: Limits on super-resolution and how to break them. In: Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (CPVR 2000), vol. 2, pp. 372–379 (2000)
Blomgren, P., Papanicolaou, G., Zhao, H.: Super-resolution in time reversal acoustics. Journal of the Acoustical Society of America 111, 230–248 (2002)
Blu, T., Thévenaz, P., Unser, M.: Generalized interpolation: higher quality at no additional cost. In: Proceedings of the 1999 International Conference on Image Processing (ICIP 1999), vol. 3, pp. 667–671 (1999)
Candocia, F.M., Principe, J.C.: Superresolution of images with learned multiple reconstruction kernels. In: Guan, L., Kung, S.Y., Larsen, J. (eds.) Multimedia Image and Video Processing, ch. 4, pp. 219–243. CRC Press, New York (2000)
Corduneanu, A., Platt, J.C.: Learning spatially-variable filters for super-resolution of text. In: Proceedings of the 2010 International Conference on Image Processing (ICIP 2010), vol. 1, pp. 849–852 (2005)
Davis, L.: A survey of edge detection techniques. Computer Graphics and Image Processing 4, 248–270 (1975)
Dey, T.K., Mehlhorn, K., Ramos, E.A.: Curve reconstruction: connecting dots with good reason. Computational Geometry: Theory and Applications 10, 289–303 (2000)
Farsiu, S., Elad, M., Milanfar, P.: A practical approach to super-resolution. In: Proceedings of the 40th Asilomar Conference on Signals, Systems and Computers (2006) (invited paper)
Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications, 56–65 (2002)
Friedman, T.L.: The World is Flat: A Brief History of the Twenty-First Century. Farrar, Strauss and Giroux (2005)
Irani, M., Peleg, S.: Super resolution from image sequences. In: Proceedings of the 10th International Conference on Pattern Recognition (ICPR 1990), vol. 2, pp. 115–120 (1990)
Jiang, Z., Wong, T.-T., Bao, H.: Practical super-resolution from dynamic video sequences. In: Proceedings of the 2003 IEEE Conference on Computation Vision and Pattern Recognition (CVPR 2003), vol. 2, pp. 549–554 (2003)
Lehmann, T.M., Gönner, C., Spitzer, K.: Survey: interpolation methods in medical image processing. IEEE Transactions on Medical Imaging 18(11), 1049–1075 (1999)
Lengauer, T., Mehlhorn, K.: The HILL system: a design environment for the hierarchical specification, compaction, and simulation of integrated circuit layouts. In: Penfield Jr., P. (ed.) Proceedings of the MIT VLSI Conference, Artech House, Inc. (1984)
Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Transactions on Image Processing 10(10), 1521–1527 (2001)
Lin, Z., Shum, H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 83–97 (2004)
Mehlhorn, K.: On the size of sets of computable functions. In: Proceedings of the 14th IEEE Symposium on Automata and Switching Theory, pp. 190–196 (1973)
Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)
Meijering, E.: A chronology of interpolation: from ancient astronomy to modern signal and image processing. Proceedings of the IEEE 90(3), 319–342 (2002)
Mitra, B.: Gaussian-based edge-detection methods: a survey. IEEE Transactions on Systems, Man, and Cybernetics — Part C: Applications and Reviews 32(3) (2002)
Mueller, N., Lu, Y., Do, M.N.: Image interpolation using multiscale geometric representations. In: Proceedings of the 2007 SPIE Conference on Electronic Imaging (2007)
Price, J.R., Hayes III, M.H.: Optimal prefiltering for improved image interpolation. In: Proceedings of the 32nd Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 959–963 (1998)
Price, K.: Keith Price Bibliography: evaluation of edge detection algorithms (2009), http://www.visionbib.com/bibliography/edge235.html
Raghupathy, A., Chandrachoodan, N., Liu, K.J.R.: Algorithm and VLSI architecture for high performance adaptive video scaling. IEEE MultiMedia 5(4), 489–502 (2003)
Sajjad, M., Khattak, N., Jafri, N.: Image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes. Proceedings of the World Academy of Science, Engineering and Technology 25, 88–97 (2007)
Shechtman, E.: Space-time super-resolution. Master’s thesis, Faculty of MAthematics and Computer Science, The Weizmann Institute of Science (2003)
Sun, J., Sun, J., Xu, Z., Shum, H.-Y.: Image super-resolution using gradient profile prior. In: Proceedings of the 2007 IEEE Conference on Computation Vision and Pattern Recognition (CVPR 2007) (2007); Poster
Easy Thumbnails User Manual. Fookes Software, Switzerland (2001)
Tsai, R.Y., Huang, T.S.: Multiframe image restoration and registration. In: Advances in Computer Vision and Image Processing, ch. 7, vol. 1, pp. 317–339. JAI Press, Greenwich (1984)
Turkowski, K.: Filters for common resampling tasks. In: Glassner, A.S. (ed.) Graphics Gems I, pp. 147–165. Academic Press, London (1990)
Unser, M.: Sampling — 50 years after Shannon. Proceedings of the IEEE 88(4), 569–587 (2000)
van Ouwerkerk, J.D.: A modular approach to image super-resolution algorithms. Ph.D. thesis, Dept. of Media and Knowledge Eng., Delft Univ. of Technology (2006)
Wittman, T.: Mathematical techniques for image interpolation, Oral exam paper (2005), http://www.math.umn.edu/~wittman/Poral2.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fleischer, R. (2009). Is the World Linear?. In: Albers, S., Alt, H., Näher, S. (eds) Efficient Algorithms. Lecture Notes in Computer Science, vol 5760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03456-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-03456-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03455-8
Online ISBN: 978-3-642-03456-5
eBook Packages: Computer ScienceComputer Science (R0)