C-semiring Frameworks for Minimum Spanning Tree Problems | SpringerLink
Skip to main content

C-semiring Frameworks for Minimum Spanning Tree Problems

  • Conference paper
Recent Trends in Algebraic Development Techniques (WADT 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5486))

Included in the following conference series:

Abstract

In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  2. Graham, R., Hell, P.: On the history of the minimum spanning tree problem. IEEE Annals of the History of Computing 07(1), 43–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, B., Hou, J.: Multicast routing and its QoS extension: problems, algorithms, and protocols. IEEE Network 14, 22–36 (2000)

    Article  Google Scholar 

  4. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962. Springer, London (2004)

    MATH  Google Scholar 

  5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J. Autom. Lang. Comb. 7(3), 321–350 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Modelling multicast QoS routing by using best-tree search in and-or graphs and soft constraint logic programming. Electr. Notes Theor. Comput. Sci. 190(3), 111–127 (2007)

    Article  MATH  Google Scholar 

  8. Bistarelli, S., Santini, F.: A formal and practical framework for constraint-based routing. In: ICN, pp. 162–167. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  9. Zhou, G., Gen, M.: Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research 114, 141–152 (1999)

    Article  MATH  Google Scholar 

  10. Knowles, J.D., Corne, D.W.: Enumeration of pareto optimal multi-criteria spanning trees - a proof of the incorrectness of Zhou and Gen’s proposed algorithm. European Journal of Operational Research 143(3), 543–547 (2002)

    Article  MATH  Google Scholar 

  11. Kuich, W., Salomaa, A.: Semirings, automata, languages. Springer, London (1986)

    Book  MATH  Google Scholar 

  12. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 63–67. IOS Press, Amsterdam (2006)

    Google Scholar 

  13. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc, Boston (2005)

    Google Scholar 

  14. Shor, P.W.: A new proof of Cayley’s formula for counting labeled trees. J. Comb. Theory Ser. A 71(1), 154–158 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and generalized shortest path problems. Journal of Heuristics 8(1), 25–41 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bistarelli, S., Santini, F. (2009). C-semiring Frameworks for Minimum Spanning Tree Problems. In: Corradini, A., Montanari, U. (eds) Recent Trends in Algebraic Development Techniques. WADT 2008. Lecture Notes in Computer Science, vol 5486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03429-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03429-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03428-2

  • Online ISBN: 978-3-642-03429-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics