Abstract
In this paper we define general algebraic frameworks for the Minimum Spanning Tree problem based on the structure of c-semirings. We propose general algorithms that can compute such trees by following different cost criteria, which must be all specific instantiation of c-semirings. Our algorithms are extensions of well-known procedures, as Prim or Kruskal, and show the expressivity of these algebraic structures. They can deal also with partially-ordered costs on the edges.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)
Graham, R., Hell, P.: On the history of the minimum spanning tree problem. IEEE Annals of the History of Computing 07(1), 43–57 (1985)
Wang, B., Hou, J.: Multicast routing and its QoS extension: problems, algorithms, and protocols. IEEE Network 14, 22–36 (2000)
Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962. Springer, London (2004)
Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. J. ACM 44(2), 201–236 (1997)
Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems. J. Autom. Lang. Comb. 7(3), 321–350 (2002)
Bistarelli, S., Montanari, U., Rossi, F., Santini, F.: Modelling multicast QoS routing by using best-tree search in and-or graphs and soft constraint logic programming. Electr. Notes Theor. Comput. Sci. 190(3), 111–127 (2007)
Bistarelli, S., Santini, F.: A formal and practical framework for constraint-based routing. In: ICN, pp. 162–167. IEEE Computer Society, Los Alamitos (2008)
Zhou, G., Gen, M.: Genetic algorithm approach on multi-criteria minimum spanning tree problem. European Journal of Operational Research 114, 141–152 (1999)
Knowles, J.D., Corne, D.W.: Enumeration of pareto optimal multi-criteria spanning trees - a proof of the incorrectness of Zhou and Gen’s proposed algorithm. European Journal of Operational Research 143(3), 543–547 (2002)
Kuich, W., Salomaa, A.: Semirings, automata, languages. Springer, London (1986)
Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based formalisms. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI, pp. 63–67. IOS Press, Amsterdam (2006)
Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley Longman Publishing Co. Inc, Boston (2005)
Shor, P.W.: A new proof of Cayley’s formula for counting labeled trees. J. Comb. Theory Ser. A 71(1), 154–158 (1995)
Bistarelli, S., Montanari, U., Rossi, F.: Soft constraint logic programming and generalized shortest path problems. Journal of Heuristics 8(1), 25–41 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bistarelli, S., Santini, F. (2009). C-semiring Frameworks for Minimum Spanning Tree Problems. In: Corradini, A., Montanari, U. (eds) Recent Trends in Algebraic Development Techniques. WADT 2008. Lecture Notes in Computer Science, vol 5486. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03429-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-03429-9_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03428-2
Online ISBN: 978-3-642-03429-9
eBook Packages: Computer ScienceComputer Science (R0)