Maintaining Arrays of Contiguous Objects | SpringerLink
Skip to main content

Maintaining Arrays of Contiguous Objects

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

Abstract

In this paper we consider methods for dynamically storing a set of different objects (“modules”) in a physical array. Each module requires one free contiguous subinterval in order to be placed. Items are inserted or removed, resulting in a fragmented layout that makes it harder to insert further modules. It is possible to relocate modules, one at a time, to another free subinterval that is contiguous and does not overlap with the current location of the module. These constraints clearly distinguish our problem from classical memory allocation. We present a number of algorithmic results, including a bound of \({\it \Theta}(n^2)\) on physical sorting if there is a sufficiently large free space and sum up NP-hardness results for arbitrary initial layouts. For online scenarios in which modules arrive one at a time, we present a method that requires O(1) moves per insertion or deletion and amortized cost \(O(m_i \lg \hat{m})\) per insertion or deletion, where m i is the module’s size, \(\hat{m}\) is the size of the largest module and costs for moves are linear in the size of a module.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fekete, S.P., Kamphans, T., Schweer, N., Tessars, C., van der Veen, J.C., Angermeier, J., Koch, D., Teich, J.: No-break dynamic defragmentation of reconfigurable devices. In: Proc. Internat. Conf. Field Program. Logic Appl. (FPL 2008) (2008)

    Google Scholar 

  2. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, 3rd edn., vol. 1. Addison-Wesley, Reading (1997)

    MATH  Google Scholar 

  3. Luby, M.G., Naor, J., Orda, A.: Tight bounds for dynamic storage allocation. SIAM Journal on Discrete Math. 9, 155–166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Naor, J., Orda, A., Petruschka, Y.: Dynamic storage allocation with known durations. Discrete Applied Mathematics 3, 203–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survey. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing Company, Boston (1996)

    Google Scholar 

  6. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 3rd edn., vol. 3. Addison-Wesley, Reading (1997)

    MATH  Google Scholar 

  7. Willard, D.E.: A density control algorithm for doing insertions and deletions in a sequentially ordered file in good worst-case time. Information and Computation 97, 150–204 (1992)

    Article  MATH  Google Scholar 

  8. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. SIAM J. Comput. 35, 341–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bender, M.A., Hu, H.: An adaptive packed-memory array. Transactions on Database Systems 32 (2007); Special Issue on PODS 2006

    Google Scholar 

  10. Bender, M.A., Farach-Colton, M., Mosteiro, M.A.: Insertion sort is O(n log n). Theory of Computing Systems 39, 391–397 (2006); Special Issue on FUN 2004

    Article  MathSciNet  MATH  Google Scholar 

  11. Gue, K.R., Kim, B.S.: Puzzle-based storage systems. TR, Auburn University (2006)

    Google Scholar 

  12. Kenyon, C., Remila, E.: Approximate strip packing. In: Proc. 37th Annu. IEEE Sympos. Found. Comput. Sci., pp. 31–36 (1996)

    Google Scholar 

  13. Augustine, J., Banerjee, S., Irani, S.: Strip packing with precedence constraints and strip packing with release times. In: Proc. 18th Annu. ACM Sympos. Parallel Algor. Architect., pp. 180–189 (2006)

    Google Scholar 

  14. Brodal, G.S.: Worst-case efficient priority queues. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), Atlanta, Georgia, pp. 52–58 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bender, M.A., Fekete, S.P., Kamphans, T., Schweer, N. (2009). Maintaining Arrays of Contiguous Objects. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics