Small-Space Analogues of Valiant’s Classes | SpringerLink
Skip to main content

Small-Space Analogues of Valiant’s Classes

  • Conference paper
Fundamentals of Computation Theory (FCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5699))

Included in the following conference series:

  • 459 Accesses

Abstract

In the uniform circuit model of computation, the width of a boolean circuit exactly characterises the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. We introduce the class VL as an algebraic variant of deterministic log-space L. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width.

Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs can be expressed as a read-once exponential sum over polynomials in VL, i.e. \({\sf VBP}\in{\it \Sigma}^R \cdot{\sf VL}\). We also show that \({\it \Sigma}^R \cdot {\sf VBP} ={\sf VBP}\), i.e. VBPs are stable under read-once exponential sums. Further, we show that read-once exponential sums over a restricted class of constant-width arithmetic circuits are within VQP, and this is the largest known such subclass of poly-log-width circuits with this property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Valiant, L.G.: Completeness classes in algebra. In: Symposium on Theory of Computing STOC, pp. 249–261 (1979)

    Google Scholar 

  2. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  3. Michaux, C.: Une remarque à propos des machines sur ℝ introduites par Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris 309(7), 435–437 (1989)

    MathSciNet  MATH  Google Scholar 

  4. de Naurois, P.J.: A Measure of Space for Computing over the Reals. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 231–240. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Koiran, P., Perifel, S.: VPSPACE and a Transfer Theorem over the Reals. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 417–428. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Koiran, P., Perifel, S.: VPSPACE and a Transfer Theorem over the Complex Field. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 359–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC\(^{\mbox{1}}\) and L. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 477–488. Springer, Heidelberg (2007); full version in ECCC TR07-087

    Chapter  Google Scholar 

  8. Mahajan, M., Rao, B.V.R.: Arithmetic circuits, syntactic multilinearity and skew formulae. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 455–466. Springer, Heidelberg (2008); full version in ECCC TR08-048

    Chapter  Google Scholar 

  9. Jansen, M., Rao, B.: Simulation of arithmetical circuits by branching programs preserving constant width and syntactic multilinearity. In: Frid, A.E., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675. Springer, Heidelberg (2009)

    Google Scholar 

  10. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Arora, S., Barak, B.: Complexity Theory: A Modern Approach (to be published) (2009)

    Google Scholar 

  12. Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences 38(1), 150–164 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM Journal on Computing 21, 655–670 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 704–716. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  16. Malod, G.: The complexity of polynomials and their coefficient functions. In: IEEE Conference on Computational Complexity, pp. 193–204 (2007)

    Google Scholar 

  17. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System Sciences 57, 200–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mahajan, M., Rao, B.V.R. (2009). Small-Space Analogues of Valiant’s Classes. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03409-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03408-4

  • Online ISBN: 978-3-642-03409-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics