Abstract
In the uniform circuit model of computation, the width of a boolean circuit exactly characterises the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. We introduce the class VL as an algebraic variant of deterministic log-space L. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width.
Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs can be expressed as a read-once exponential sum over polynomials in VL, i.e. \({\sf VBP}\in{\it \Sigma}^R \cdot{\sf VL}\). We also show that \({\it \Sigma}^R \cdot {\sf VBP} ={\sf VBP}\), i.e. VBPs are stable under read-once exponential sums. Further, we show that read-once exponential sums over a restricted class of constant-width arithmetic circuits are within VQP, and this is the largest known such subclass of poly-log-width circuits with this property.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Valiant, L.G.: Completeness classes in algebra. In: Symposium on Theory of Computing STOC, pp. 249–261 (1979)
Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics. Springer, Heidelberg (2000)
Michaux, C.: Une remarque à propos des machines sur ℝ introduites par Blum, Shub et Smale. Comptes Rendus de l’Académie des Sciences de Paris 309(7), 435–437 (1989)
de Naurois, P.J.: A Measure of Space for Computing over the Reals. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 231–240. Springer, Heidelberg (2006)
Koiran, P., Perifel, S.: VPSPACE and a Transfer Theorem over the Reals. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 417–428. Springer, Heidelberg (2007)
Koiran, P., Perifel, S.: VPSPACE and a Transfer Theorem over the Complex Field. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 359–370. Springer, Heidelberg (2007)
Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes around NC\(^{\mbox{1}}\) and L. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 477–488. Springer, Heidelberg (2007); full version in ECCC TR07-087
Mahajan, M., Rao, B.V.R.: Arithmetic circuits, syntactic multilinearity and skew formulae. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 455–466. Springer, Heidelberg (2008); full version in ECCC TR08-048
Jansen, M., Rao, B.: Simulation of arithmetical circuits by branching programs preserving constant width and syntactic multilinearity. In: Frid, A.E., Morozov, A., Rybalchenko, A., Wagner, K.W. (eds.) CSR 2009. LNCS, vol. 5675. Springer, Heidelberg (2009)
Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, New York (1999)
Arora, S., Barak, B.: Complexity Theory: A Modern Approach (to be published) (2009)
Barrington, D.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. Journal of Computer and System Sciences 38(1), 150–164 (1989)
Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM Journal on Computing 21, 655–670 (1992)
Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 704–716. Springer, Heidelberg (2006)
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1997)
Malod, G.: The complexity of polynomials and their coefficient functions. In: IEEE Conference on Computational Complexity, pp. 193–204 (2007)
Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System Sciences 57, 200–212 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mahajan, M., Rao, B.V.R. (2009). Small-Space Analogues of Valiant’s Classes. In: Kutyłowski, M., Charatonik, W., Gębala, M. (eds) Fundamentals of Computation Theory. FCT 2009. Lecture Notes in Computer Science, vol 5699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03409-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-03409-1_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03408-4
Online ISBN: 978-3-642-03409-1
eBook Packages: Computer ScienceComputer Science (R0)