Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application | SpringerLink
Skip to main content

Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application

  • Conference paper
Parallel Computing Technologies (PaCT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5698))

Included in the following conference series:

  • 1033 Accesses

Abstract

Previously [1], we reported a coarse-grained parallel computational approach to identifying rare molecular evolutionary events often referred to as horizontal gene transfers. Very high degrees of parallelism (up to 65x speedup on 4,096 processors) were reported, yet the overall execution time for a realistic problem size was still on the order of 12 days. With the availability of large numbers of compute clusters, as well as genomic sequence from more than 2,000 species containing as many as 35,000 genes each, and trillions of sequence nucleotides in all, we demonstrated the computational feasibility of a method to examine "clusters" of genes using phylogenetic tree similarity as a distance metric. A full serial solution to this problem requires years of CPU time, yet only makes modest IPC and memory demands; thus, it is an ideal candidate for a grid computing approach involving low-cost compute nodes. This paper now describes a multiple granularity parallelism solution that includes exploitation of multi-core shared memory nodes to address fine-grained aspects in the tree-clustering phase of our previous deployment of XenoCluster 1.0. In addition to benchmarking results that show up to 80% speedup efficiency on 8 CPU cores, we report on the biological accuracy and relevance of our results compared to a reported set of known xenologs in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Walters, J., Casavant, T., Robinson, J., Bair, T., Braun, T., Scheetz, T.: XenoCluster: A Grid Computing Approach to Finding Ancient Evolutionary Anomolies. In: Malyshkin, V.E. (ed.) PaCT 2005. LNCS, vol. 3606, pp. 355–366. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J., Natale, D.A.: The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4(1), 41 (2003)

    Article  Google Scholar 

  3. Li, L., Stoeckert Jr., C., Roos, D.S.: OrthoMCL. Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 13, 2178–2189 (2003)

    Article  Google Scholar 

  4. Lee, Y., Sultana, R., Pertea, G., Cho, J., Karamycheva, S., Tsia, J., Parvizi, B., Cheung, F., Tonescu, V., White, J., Holt, I., Liang, F., Quackenbush, J.: Cross-referencing eukaryotic genomes: TIGR orthologous gene alignments (TOGA). Genome Research 12(3), 493–502 (2002)

    Article  Google Scholar 

  5. Felsenstein, J.: PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989)

    Google Scholar 

  6. Swofford, D.: LPAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts (2003)

    Google Scholar 

  7. Alexandros, S.: RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  8. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 15, 403–410 (1990)

    Article  Google Scholar 

  9. Pruitt, K.D., Katz, K., Sicotte, H., Maglott, D.R.: Introducing RefSeq and LocusLink: curated human genome resources at the NCBI. Trends Genet. 16(1), 44–47 (2000)

    Article  Google Scholar 

  10. Stajich, J.E., Block, D., Boulez, K., Brenner, S.E., Chervitz, S.A., Dagdigian, C., Fuellen, G., Gilbert, J.G.R., Korf, I., Lapp, H., Lehvaslaiho, H., Matsalla, C., Mungall, C.J., Osborne, B.I., Pocock, M.R., Schattner, P., Senger, M., Stein, L.D., Stupka, E.D., Wilkinson, M., Birney, E.: The Bioperl Toolkit: Perl modules for the life sciences. Genome Research 12(10), 1611–1618 (2002)

    Article  Google Scholar 

  11. PBS Pro, http://www.pbspro.com/

  12. Thompson, J.D., Higgins, D.G., Gibson, T.J.: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  13. Wang, J.T.L., Shan, H., Shasha, D., Piel, W.H.: TreeRank: A Similarity Measure for Nearest Neighbor Searching in Phylogenetic Databases. In: Proceedings of the 15th International Conference on Scientific and Statistical Database Management (SSDBM 2003), Cambridge, Massachusetts, pp. 171–180 (2003)

    Google Scholar 

  14. Nichols, B., Buttlar, D., Farrell, J.P.: Pthreads Programming A POSIX Standard for Better Multiprocessing. O’Reilly, Sebastopol (1996)

    Google Scholar 

  15. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 379–387. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Hall, C., Brachat, S., Dietrich, F.S.: Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell. 4(6), 1102–1115 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walters, J.D., Bair, T.B., Braun, T.A., Scheetz, T.E., Robinson, J.P., Casavant, T.L. (2009). Multi-granularity Parallel Computing in a Genome-Scale Molecular Evolution Application. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2009. Lecture Notes in Computer Science, vol 5698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03275-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03275-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03274-5

  • Online ISBN: 978-3-642-03275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics