Local Quantitative LTL Model Checking | SpringerLink
Skip to main content

Local Quantitative LTL Model Checking

  • Conference paper
Formal Methods for Industrial Critical Systems (FMICS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5596))

  • 524 Accesses

Abstract

Quantitative analysis of probabilistic systems has been studied mainly from the global model checking point of view. In the global model-checking, the goal of verification is to decide the probability of satisfaction of a given property for all reachable states in the state space of the system under investigation. On the other hand, in local model checking approach the probability of satisfaction is computed only for the set of initial states. In theory, it is possible to solve the local model checking problem using the global model checking approach. However, the global model checking procedure can be significantly outperformed by a dedicated local model checking one. In this paper we present several particular local model checking techniques that if applied to global model checking procedure reduce the runtime needed from days to minutes.

This work has been partially supported by the Grant Agency of Czech Republic grant No. 201/06/1338 and the Academy of Sciences grant No. 1ET408050503.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous-time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Aspnes, J., Herlihy, M.: Fast randomized consensus using shared memory. Journal of Algorithms 15(1), 441–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation Thesis, Universität Mannheim (1998)

    Google Scholar 

  4. Baier, C., Größer, M., Ciesinski, F.: Partial Order Reduction for Probabilistic Systems. In: 1st International Conference on Quantitative Evaluation of Systems (QEST 2004), pp. 230–239. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  5. Barnat, J., Brim, L., Černá, I., Češka, M., Tůmová, J.: ProbDiVinE-MC: Multi-Core LTL Model Checker for Probabilistic Systems. In: Proceedings of QEST 2008, Tool Paper. IEEE, Los Alamitos (2008) (to appear), http://anna.fi.muni.cz/probdivine

    Google Scholar 

  6. Barnat, J., Chaloupka, J., van de Pol, J.: Improved Distributed Algorithms for SCC Decomposition. Electron. Notes Theor. Comput. Sci. 198(1), 63–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Jeannet, B., de Argenio, P., Larsen, K.G.: RAPTURE: A tool for verifying Markov Decision Processes. In: Proc. Tools Day / CONCUR 2002. Tech. Rep. FIMU-RS-2002-05. MU Brno, pp. 84–98 (2002)

    Google Scholar 

  9. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1, 65–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ciesinski, F., Baier, C.: LiQuor: A tool for Qualitative and Quantitative Linear Time analysis of Reactive Systems. In: Proc. of QEST 2006, pp. 131–132. IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  11. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. Journal of the ACM 42(4), 857–907 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Alfaro, L.: Formal Verification of Stochastic Systems. PhD thesis, Stanford University, Department of Computer Science (1997)

    Google Scholar 

  13. Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc., Orlando (1970)

    MATH  Google Scholar 

  14. Doob, J.L.: Measure theory. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  15. Hansson, H., Jonsson, B.: A Framework for Reasoning about Time and Reliability. In: IEEE Real-Time Systems Symposium, pp. 102–111 (1989)

    Google Scholar 

  16. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-stabilizating mutual exclusion. In: Proc. ACM Symposium on Principles of Distributed Computing, pp. 119–131 (1990)

    Google Scholar 

  18. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Information and Computation 88(1) (1990)

    Google Scholar 

  19. Lehmann, D., Rabin, M.: On the advantage of free choice: A symmetric and fully distributed solution to the dining philosophers problem (extended abstract). In: Proc. 8th Annual ACM Symposium on Principles of Programming Languages (POPL 1981), pp. 133–138 (1981)

    Google Scholar 

  20. ProbDiVinE homepage (2008), http://anna.fi.muni.cz/probdivine

  21. Puterman, M.L.: Markov Decision Processes-Discrete Stochastic Dynamic Programming. John Wiley &Sons, New York (1994)

    MATH  Google Scholar 

  22. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 265–276. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  23. Vardi, M.Y., Wolper, P.: Reasoning about infinite computation paths. In: Proceedings of 24th IEEE Symposium on Foundation of Computer Science, Tuscan, pp. 185–194 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barnat, J., Brim, L., Černá, I., Češka, M., Tůmová, J. (2009). Local Quantitative LTL Model Checking . In: Cofer, D., Fantechi, A. (eds) Formal Methods for Industrial Critical Systems. FMICS 2008. Lecture Notes in Computer Science, vol 5596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03240-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03240-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03239-4

  • Online ISBN: 978-3-642-03240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics