Clustering with Domain Value Dissimilarity for Categorical Data | SpringerLink
Skip to main content

Clustering with Domain Value Dissimilarity for Categorical Data

  • Conference paper
Advances in Data Mining. Applications and Theoretical Aspects (ICDM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5633))

Included in the following conference series:

Abstract

Clustering is a representative grouping process to find out hidden information and understand the characteristics of dataset to get a view of the further analysis. The concept of similarity and dissimilarity of objects is a fundamental decisive factor for clustering and the measure of them dominates the quality of results. When attributes of data are categorical, it is not simple to quantify the dissimilarity of data objects that have unimportant attributes or synonymous values. We suggest a new idea to quantify dissimilarity of objects by using distribution information of data correlated to each categorical value. Our method discovers intrinsic relationship of values and measures dissimilarity of objects effectively. Our approach does not couple with a clustering algorithm tightly and so can be applied various algorithms flexibly. Experiments on both synthetic and real datasets show propriety and effectiveness of this method. When our method is applied only to traditional clustering algorithms, the results are considerably improved than those of previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Myatt, G.J.: Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining. John Wiley & Sons, Inc., Chichester (2007)

    Book  MATH  Google Scholar 

  2. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Ganti, V., Gehrke, J., Ramakrishnan, R.: Cactus-clustering categorical data using summaries. In: Proc. of ACM SIGKDD, pp. 73–83 (1999)

    Google Scholar 

  4. Guha, S., Rastogi, R., Shim, K.: Rock: A robust clustering algorithm for categorical attributes. In: Information Systems, pp. 512–521 (1999)

    Google Scholar 

  5. Zhang, Y., Fu, A.W.C., Cai, C.H., Heng, P.A.: Clustering categorical data. In: ICDE, p. 305 (2000)

    Google Scholar 

  6. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)

    Google Scholar 

  7. Cost, S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning 10, 57–78 (1993)

    Google Scholar 

  8. Ahmad, A., Dey, L.: A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set. Pattern Recognition Letters 28(1), 110–118 (2007)

    Article  Google Scholar 

  9. Barbará, D., Li, Y., Couto, J.: COOLCAT: an entropy-based algorithm for categorical clustering. In: Kalpakis, K., Goharian, N., Grossmann, D. (eds.) Proceedings of the Eleventh International Conference on Information and Knowledge Management (CIKM 2002), November 4–9, pp. 582–589. ACM Press, New York (2002)

    Google Scholar 

  10. Andritsos, P., Tsaparas, P., Miller, R.J., Sevcik, K.C.: LIMBO: Scalable clustering of categorical data. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 123–146. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Boriah, S., Chandola, V., Kumar, V.: Similarity measures for categorical data: A comparative evaluation. In: SDM, pp. 243–254. SIAM, Philadelphia (2008)

    Google Scholar 

  12. Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. In: Research Issues on Data Mining and Knowledge Discovery, pp. 1–8 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Lee, YJ., Park, M. (2009). Clustering with Domain Value Dissimilarity for Categorical Data. In: Perner, P. (eds) Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2009. Lecture Notes in Computer Science(), vol 5633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03067-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03067-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03066-6

  • Online ISBN: 978-3-642-03067-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics