Amount of Nonconstructivity in Finite Automata | SpringerLink
Skip to main content

Amount of Nonconstructivity in Finite Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5642))

Included in the following conference series:

Abstract

When D. Hilbert used nonconstructive methods in his famous paper on invariants (1888), P.Gordan tried to prevent the publication of this paper considering these methods as non-mathematical. L. E. J. Brouwer in the early twentieth century initiated intuitionist movement in mathematics. His slogan was ”nonconstructive arguments have no value for mathematics”. However, P. Erdös got many exciting results in discrete mathematics by nonconstructive methods. It is widely believed that these results either cannot be proved by constructive methods or the proofs would have been prohibitively complicated. R.Freivalds [7] showed that nonconstructive methods in coding theory are related to the notion of Kolmogorov complexity.

We study the problem of the quantitative characterization of the amount of nonconstructiveness in nonconstructive arguments. We limit ourselves to computation by deterministic finite automata. The notion of nonconstructive computation by finite automata is introduced. Upper and lower bounds of nonconstructivity are proved.

Research supported by Grant No.09.1437 from the Latvian Council of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Bārzdiņš, J.: Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Mathematics Doklady 9, 1251–1254 (1968)

    MATH  Google Scholar 

  3. Bārzdiņš, J., Podnieks, K.: Towards a theory of inductive inference. In: Proceedings of 2nd Symposium and Summer School on Mathematical Foundations of Computer Science, Štrbske Pleso, High Tatras, Czechoslovakia, pp. 9–15 (1973)

    Google Scholar 

  4. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 565–613. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Erdös, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53(4), 292–294 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of computability theory, pp. 473–503. North-Holland, Amsterdam (1999)

    Chapter  Google Scholar 

  7. Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freivalds, R., Bārzdiņš, J., Podnieks, K.: Inductive Inference of Recursive Functions: Complexity Bounds. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 111–155. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Garrett, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)

    MATH  Google Scholar 

  10. Hilbert, D.: Uber die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)

    MATH  Google Scholar 

  13. Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Podnieks, K.: Computational complexity of prediction strategies. Theory of Algorithms and Programs, Latvia State University 3, 89–102 (1977) (in Russian)

    MathSciNet  MATH  Google Scholar 

  16. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited computations. In: Proceedings of FOCS, pp. 179–190 (1965)

    Google Scholar 

  17. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one tape linear time turing machines. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 335–348. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Yamakami, T.: Swapping lemmas for regular and context-free languages with advice. The Computing Research Repository (CoRR), CoRR abs/0808.4122 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R. (2009). Amount of Nonconstructivity in Finite Automata. In: Maneth, S. (eds) Implementation and Application of Automata. CIAA 2009. Lecture Notes in Computer Science, vol 5642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02979-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02979-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02978-3

  • Online ISBN: 978-3-642-02979-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics