Abstract
When D. Hilbert used nonconstructive methods in his famous paper on invariants (1888), P.Gordan tried to prevent the publication of this paper considering these methods as non-mathematical. L. E. J. Brouwer in the early twentieth century initiated intuitionist movement in mathematics. His slogan was ”nonconstructive arguments have no value for mathematics”. However, P. Erdös got many exciting results in discrete mathematics by nonconstructive methods. It is widely believed that these results either cannot be proved by constructive methods or the proofs would have been prohibitively complicated. R.Freivalds [7] showed that nonconstructive methods in coding theory are related to the notion of Kolmogorov complexity.
We study the problem of the quantitative characterization of the amount of nonconstructiveness in nonconstructive arguments. We limit ourselves to computation by deterministic finite automata. The notion of nonconstructive computation by finite automata is introduced. Upper and lower bounds of nonconstructivity are proved.
Research supported by Grant No.09.1437 from the Latvian Council of Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, E., Shallit, J.: Algorithmic Number Theory, vol. 1. MIT Press, Cambridge (1996)
Bārzdiņš, J.: Complexity of programs to determine whether natural numbers not greater than n belong to a recursively enumerable set. Soviet Mathematics Doklady 9, 1251–1254 (1968)
Bārzdiņš, J., Podnieks, K.: Towards a theory of inductive inference. In: Proceedings of 2nd Symposium and Summer School on Mathematical Foundations of Computer Science, Štrbske Pleso, High Tatras, Czechoslovakia, pp. 9–15 (1973)
Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 565–613. Springer, Heidelberg (1995)
Erdös, P.: Some remarks on the theory of graphs. Bulletin of the American Mathematical Society 53(4), 292–294 (1947)
Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of computability theory, pp. 473–503. North-Holland, Amsterdam (1999)
Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)
Freivalds, R., Bārzdiņš, J., Podnieks, K.: Inductive Inference of Recursive Functions: Complexity Bounds. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 111–155. Springer, Heidelberg (1991)
Garrett, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)
Hilbert, D.: Uber die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)
Karp, R.M., Lipton, R.: Turing machines that take advice. L’ Enseignement Mathematique 28, 191–209 (1982)
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)
Martin-Löf, P.: The definition of random sequences. Information and Control 9(6), 602–619 (1966)
Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice. Information Processing Letters 90(4), 195–204 (2004)
Podnieks, K.: Computational complexity of prediction strategies. Theory of Algorithms and Programs, Latvia State University 3, 89–102 (1977) (in Russian)
Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited computations. In: Proceedings of FOCS, pp. 179–190 (1965)
Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one tape linear time turing machines. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 335–348. Springer, Heidelberg (2004)
Yamakami, T.: Swapping lemmas for regular and context-free languages with advice. The Computing Research Repository (CoRR), CoRR abs/0808.4122 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freivalds, R. (2009). Amount of Nonconstructivity in Finite Automata. In: Maneth, S. (eds) Implementation and Application of Automata. CIAA 2009. Lecture Notes in Computer Science, vol 5642. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02979-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-642-02979-0_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02978-3
Online ISBN: 978-3-642-02979-0
eBook Packages: Computer ScienceComputer Science (R0)