Analysis of EEG Epileptic Signals with Rough Sets and Support Vector Machines | SpringerLink
Skip to main content

Analysis of EEG Epileptic Signals with Rough Sets and Support Vector Machines

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5651))

Included in the following conference series:

  • 2178 Accesses

Abstract

Epilepsy is a common chronic neurological disorder that impacts over 1% of the population. Animal models are used to better understand epilepsy, particularly the mechanisms and the basis for better antiepileptic therapies. For animal studies, the ability to identify accurately seizures in electroencephalographic (EEG) recordings is critical, and the use of computational tools is likely to play an important role. Electrical recording electrodes were implanted in rats before kainate-induced status epilepticus (one in each hippocampus and one on the surface of the cortex), and EEG data were collected with radio-telemetry. Several data mining methods, such as wavelets, FFTs, and neural networks, were used to develop algorithms for detecting seizures. Rough sets, which were used as an additional feature selection technique in addition to the Daubechies wavelets and the FFTs, were also used in the detection algorithm. Compared with the seizure-at-once method by using the RBF neural network classifier used earlier on the same data [12], the new method achieved higher recognition rates (i.e., 91%). Furthermore, when the entire dataset was used, as compared to only 50% used earlier, preprocessing using wavelets, Principal Component Analysis, and rough sets in concert with Support Vector Machines resulted in accuracy of 94% in identifying epileptic seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. J. Neurosci. Methods. 148(2), 167–176 (2005)

    Article  PubMed  Google Scholar 

  2. Cios, K.J., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data Mining: A Knowledge Discovery Approach. Springer, Heidelberg (2007)

    Google Scholar 

  3. Dudek, F.E., Clark, S., Williams, P.A., Grabenstatter, H.L.: Kainate-induced status epilepticus: A chronic model of acquired epilepsy. In: Pitkänen, A., Schwartzkroin, P.A., Moshé, S.L. (eds.) Models of Seizures and Epilepsy, ch. 34, pp. 415–432. Elsevier Academic Press, Amsterdam (2006)

    Chapter  Google Scholar 

  4. Dudek, F.E., Staley, K.J., Sutula, T.P.: The Search for Animal Models of Epileptogenesis and Pharmacoresistance: Are There Biologic Barriers to Simple Validation Strategies? Epilepsia 43(11), 1275–1277 (2002)

    Article  PubMed  Google Scholar 

  5. Dzhala, V.I., Talos, D.M., Sdrulla, D.A., Brumback, A.C., Mathews, G.C., Benke, T.A., Delpire, E., Jensen, F.E., Staley, K.J.: NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Gabor, A.: Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. Electroencephalogr Clin Neurophysiol. 107(1), 27–32 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Gotman, J.: Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol. 76(4), 317–324 (1990)

    Article  CAS  PubMed  Google Scholar 

  8. Khan, Y., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin Neurophysiol. 114(5), 898–908 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Lehnertz, K., Litt, B.: The first international collaborative workshop on seizure prediction: summary and data description. Clin Neurophysiol. 116(3), 493–505 (2005)

    Article  PubMed  Google Scholar 

  10. Murro, A., King, D., Smith, J., Gallagher, B., Flanigin, H., Meador, K.: Computerized seizure detection of complex partial seizures. Electroencephalogr Clin Neurophysiol. 79(4), 330–333 (1991)

    Article  CAS  PubMed  Google Scholar 

  11. Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  Google Scholar 

  12. Schuyler, R., White, A., Staley, K., Cios, K.: Identification of Ictal and Pre-Ictal States using RBF Networks with Wavelet-Decomposed EEG. IEEE EMB 26(2), 86–93 (2007)

    Google Scholar 

  13. Stables, J.P., Bertram, E., Dudek, F.E., Holmes, G., Mathern, G., Pitkanen, A., White, H.S.: Therapy discovery for pharmacoresistant epilepsy and for disease-modifying therapeutics: Summary of the NIH/NINDS/AES Models II Workshop. Epilepsia 44, 1472–1478 (2003)

    Article  PubMed  Google Scholar 

  14. Staley, K.J., Dudek, F.E.: Interictal Spikes and Epileptogenesis. Epilepsy Currents 6(6), 199–202 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Subasi, A.: Application of adaptive neurofuzzy inference system for epileptic seizure detection using wavelet feature extraction. Comput. Biol. Med. 37(2), 227–244 (2007)

    Article  PubMed  Google Scholar 

  16. Swiniarski, R., Shin, J.: Classification of Mammograms Using 2D Haar Wavelet, Rough Sets and Support Vector Machines. In: Proceedings of the International Conference on Data Mining in Las Vegas, pp. 65–70 (2005)

    Google Scholar 

  17. Theodore, W.H., Spencer, S.S., Wiebe, S., Langfitt, J.T., Ali, A., Shafer, P.O., Berg, A.T., Vickrey, B.G.: Epilepsy in North America: A Report Prepared under the Auspices of the Global Campaign against Epilepsy, the International Bureau for Epilepsy, the International League Against Epilepsy, and the World Health Organization. Epilepsia 47(10), 1700–1722 (2006)

    Article  PubMed  Google Scholar 

  18. Übeyli, E.D.: Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Processing 19(2), 297–308 (2009)

    Article  Google Scholar 

  19. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1999)

    Google Scholar 

  20. White, A., Williams, P., Ferraro, D., Clark, S., Kadam, S., Dudek, F.E., Staley, K.: Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury. J. Neurosci. Methods 152, 255–266 (2006)

    Article  PubMed  Google Scholar 

  21. Williams, P.A., White, A.M., Clark, S., Ferraro, D.J., Swiercz, W., Staley, K.J., Dudek, F.E.: Development of spontaneous recurrent seizures after kainate-induced status epilepticus. J. Neurosci. 29, 2103–2122 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams, P., White, A., Ferraro, D., Clark, S., Staley, K., Dudek, F.E.: The use of radiotelemetry to evaluate electrographic seizures in rats with kainate-induced epilepsy. J. Neurosci. Methods 155(1), 39–48 (2006)

    Article  PubMed  Google Scholar 

  23. Wilson, S.: Spike detection: a review and comparison of algorithms. Clin Neurophysiol. 113, 1873–1881 (2002)

    Article  PubMed  Google Scholar 

  24. Wilson, S.B., Scheuer, M.L., Plummer, C., Young, B., Pacia, S.: Seizure detection: Correlation of human experts. Clin Neurophysiol. 114, 2156–2164 (2003)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shin, JH. et al. (2009). Analysis of EEG Epileptic Signals with Rough Sets and Support Vector Machines. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics