Mealtime Blood Glucose Classifier Based on Fuzzy Logic for the DIABTel Telemedicine System | SpringerLink
Skip to main content

Mealtime Blood Glucose Classifier Based on Fuzzy Logic for the DIABTel Telemedicine System

  • Conference paper
Artificial Intelligence in Medicine (AIME 2009)

Abstract

The accurate interpretation of Blood Glucose (BG) values is essential for diabetes care. However, BG monitoring data does not provide complete information about associated meal and moment of measurement, unless patients fulfil it manually. An automatic classification of incomplete BG data helps to a more accurate interpretation, contributing to Knowledge Management (KM) tools that support decision-making in a telemedicine system. This work presents a fuzzy rule-based classifier integrated in a KM agent of the DIABTel telemedicine architecture, to automatically classify BG measurements into meal intervals and moments of measurement. Fuzzy Logic (FL) tackles with the incompleteness of BG measurements and provides a semantic expressivity quite close to natural language used by physicians, what makes easier the system output interpretation. The best mealtime classifier provides an accuracy of 77.26% and does not increase significantly the KM analysis times. Results of classification are used to extract anomalous trends in the patient’s data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine 329, 977–986 (1993)

    Google Scholar 

  2. International Diabetes Federation (IDF): Clinical guidelines task force, global guideline for type 2 diabetes, 2005. Technical report, TR (2005)

    Google Scholar 

  3. Benjamin, E.M.: Self-monitoring of blood glucose: The basics. Clin Diabetes 20(1), 45–47 (2002)

    Article  Google Scholar 

  4. Shea, S., Weinstock, R.S., Starren, J., et al., for the IDEATel Consortium: A randomized trial comparing telemedicine case management with usual care in older, ethnically diverse, medically underserved patients with diabetes mellitus. Journal of the American Medical Informatics Association 13(1), 40–51 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rigla, M., Hernando, M.E., Gómez, E.J., Brugués, E., García-Sáez, G., Capel, I., Pons, B., de Leiva, A.: Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technology & Therapeutics 10(3), 194–199 (2008)

    Article  CAS  Google Scholar 

  6. Bellazzi, R., Arcelloni, M., Ferrari, P., Decata, P., Hernando, M.E., García, A., Gazzaruso, C., Gómez, E.J., Larizza, C., Fratino, P., Stefanelli, M.: Management of patients with diabetes through information technology: Tools for monitoring and control of the patients’ metabolic behavior. Diabetes Technology & Therapeutics 6(5), 567–578 (2004)

    Article  Google Scholar 

  7. Dinesen, B., Andersen, P.E.R.: Qualitative evaluation of a diabetes advisory system, diasnet. Journal of Telemedicine and Telecare 12(2), 71–74 (2006)

    Article  PubMed  Google Scholar 

  8. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Parts I, II, and III. Information Sciences 8, 8, 9, 199–249, 301–357, 43–80 (1975)

    Article  Google Scholar 

  9. Mamdani, E.H.: Application of fuzzy logic to approximate reasoning using linguistic systems. IEEE Transactions on Computers 26(12), 1182–1191 (1977)

    Article  Google Scholar 

  10. Gómez, E.J., Hernando, M.E., Vering, T., Rigla, M., Bott, O., García-Sáez, G., Pretschner, P., et al.: The inca system: A further step towards a telemedical artificial pancreas. IEEE Transactions on Information Technology in Biomedicine 12(4), 470–479 (2008)

    Article  PubMed  Google Scholar 

  11. García-Sáez, G., Hernando, M.E., Martínez-Sarriegui, I., Rigla, M., Torralba, V., Brugués, E., de Leiva, A., Gómez, E.J.: Architecture of a wireless personal assistant for telemedical diabetes care. International Journal of Medical Informatics 78(6), 391–403 (2009)

    Article  PubMed  Google Scholar 

  12. Alonso, J.M., Guillaume, S., Magdalena, L.: KBCT: A knowledge management tool for fuzzy inference systems. Free software under GPL license (2003), http://www.mat.upm.es/projects/advocate/kbct.htm

  13. Alonso, J.M., Magdalena, L., Guillaume, S.: HILK: A new methodology for designing highly interpretable linguistic knowledge bases using the fuzzy logic formalism. International Journal of Intelligent Systems 23, 761–794 (2008)

    Article  Google Scholar 

  14. Ichihashi, H., et al.: Neuro-fuzzy ID3: A method of inducing fuzzy decision trees with linear programming for maximizing entropy and an algebraic method for incremental learning. Fuzzy Sets and Systems 81, 157–167 (1996)

    Article  Google Scholar 

  15. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  16. Plutowski, M., Sakata, S., White, H.: Cross-validation estimates imse. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems 6, pp. 391–398. Morgan Kaufmann, San Mateo (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Sáez, G. et al. (2009). Mealtime Blood Glucose Classifier Based on Fuzzy Logic for the DIABTel Telemedicine System. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02976-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02975-2

  • Online ISBN: 978-3-642-02976-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics