Abstract
Prominent biomedical literature search tools like ScienceDirect, PubMed Central or MEDLINE allow for efficient retrieval of resources based on key words. Due to vast amounts of data available in life sciences, key word search is not always sufficient, though. One would often welcome more intelligent search for knowledge, i.e., for concepts and their mutual relations. This is, however, still a major challenge, since getting the necessary machine-readable knowledge manually is virtually impossible in large scale, while its automatic extraction is not particularly reliable. We have researched a novel framework actually enabling practical exploitation of automatically extracted knowledge, though. On the top of the framework, we implemented CORAAL, a prototype for knowledge-based biomedical literature search. This paper describes its essential principles, innovative capabilities and current results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bechhofer, S., et al.: Tackling the ontology acquisition bottleneck: An experiment in ontology re-engineering (2003), http://tinyurl.com/96w7ms (April 2008)
Nováček, V.: Towards an efficient knowledge-based publication data exploitation: An oncological literature search scenario. Technical Report DERI-TR-2009-03-23, DERI, NUIG (2009), http://tinyurl.com/csh3rf
Groza, T., Handschuh, S., Möller, K., Decker, S.: KonneXSALT: First steps towards a semantic claim federation infrastructure. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 80–94. Springer, Heidelberg (2008)
Manola, F., Miller, E.: RDF Primer (2004), http://www.w3.org/TR/rdf-primer/ (November 2008)
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 5 (2001)
Maedche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of ECAI 2000. IOS Press, Amsterdam (2000)
Voelker, J., Vrandecic, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)
Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema (2004), http://www.w3.org/TR/rdf-schema/ (Feburary 2006)
McGuinness, D.L.: Ontology-enhanced search for primary care medical literature. In: Proceedings of the Medical Concept Representation and Natural Language Processing Conference, pp. 16–19 (1999)
Abasolo, J.M., Gómez, M.: Melisa: An ontology-based agent for information retrieval in medicine. In: Proceedings of the First International Workshop on the Semantic Web (SemWeb 2000), pp. 73–82 (2000)
Dietze, H.: et al.: Gopubmed: Exploring pubmed with ontological background knowledge. In: Ontologies and Text Mining for Life Sciences, IBFI (2008)
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Decription Logic Handbook: Theory, implementation, and applications. Cambridge University Press, Cambridge (2003)
Müller, H.M., Kenny, E.E., Sternberg, P.W.: Textpresso: an ontology-based information retrieval and extraction system for biological literature. PLoS Biology 2(11) (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nováček, V., Groza, T., Handschuh, S. (2009). CORAAL – Towards Deep Exploitation of Textual Resources in Life Sciences. In: Combi, C., Shahar, Y., Abu-Hanna, A. (eds) Artificial Intelligence in Medicine. AIME 2009. Lecture Notes in Computer Science(), vol 5651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02976-9_30
Download citation
DOI: https://doi.org/10.1007/978-3-642-02976-9_30
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02975-2
Online ISBN: 978-3-642-02976-9
eBook Packages: Computer ScienceComputer Science (R0)