Kernelized Fuzzy Rough Sets | SpringerLink
Skip to main content

Kernelized Fuzzy Rough Sets

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5589))

Included in the following conference series:

Abstract

Kernel machines and rough sets are two classes of popular learning techniques. Kernel machines enhance traditional linear learning algorithms to deal with nonlinear domains by a nonlinear mapping, while rough sets introduce a human-like manner to deal with uncertainty in learning. Granulation and approximation play a central role in rough sets based learning and reasoning. Fuzzy granulation and fuzzy approximation, which is inspired by the ways in which humans granulate information and reason with it, are widely discussed in literatures. However, how to generate effective fuzzy granules from data has not been fully studied so far. In this work, we integrate kernel functions with fuzzy rough set models and propose two types of kernelized fuzzy rough sets. Kernel functions are employed to compute the fuzzy T-equivalence relations between samples, thus generate fuzzy information granules of the approximation space, and then these fuzzy granules are used to approximate the classification based on the conception of fuzzy lower and upper approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal of General Systems 17, 191–209 (1990)

    Article  MATH  Google Scholar 

  2. Fernandez-Riverola, F., Diaz, F., et al.: Reducing the memory size of a fuzzy case-based reasoning system applying rough set techniques. IEEE Transactions on systems man and cybernetics part c-applications and reviews 37, 138–146 (2007)

    Article  Google Scholar 

  3. Genton, M.: Classes of kernels for machine learning: a statistics perspective. Journal of machine learning research 2, 299–312 (2001)

    MATH  Google Scholar 

  4. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of machine learning research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  5. Hassanien, A.: Fuzzy rough sets hybrid scheme for breast cancer detection. Image and vision computing 25, 172–183 (2007)

    Article  Google Scholar 

  6. Hong, T.P., Wang, T.T., Wang, S.L.: Learning a coverage set of maximally general fuzzy rules by rough sets. Expert systems with application 19, 97–103 (2000)

    Article  Google Scholar 

  7. Hu, Q.H., Yu, D.R., Xie, Z.X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern recognition letters 27, 414–423 (2006)

    Article  Google Scholar 

  8. Hu, Q.H., Xie, Z., Yu, D.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern recognition 40, 3509–3521 (2007)

    Article  MATH  Google Scholar 

  9. Hu, Q.H., Yu, D.R., Xie, Z.X.: Neighborhood classifiers. Expert systems with applications 34, 866–876 (2008)

    Article  Google Scholar 

  10. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Transactions on fuzzy systems 15, 73–89 (2007)

    Article  Google Scholar 

  11. Kononenko, I.: Estimating attributes: Analysis and extensions of Relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Mi, J.S., Zhang, W.X.: An axiomatic characterization of a fuzzy generalization of rough sets. Information Sciences 160, 235–249 (2004)

    Article  MATH  Google Scholar 

  13. Morsi, N.N., Yakout, M.M.: Axiomatics for fuzzy rough set. Fuzzy Sets System 100, 327–342 (1998)

    Article  MATH  Google Scholar 

  14. Moser, B.: On the T-transitivity of kernels. Fuzzy Sets and Systems 157, 1787–1796 (2006)

    Article  MATH  Google Scholar 

  15. Moser, B.: On representing and generating kernels by fuzzy equivalence relations. Journal of machine learning research 7, 2603–2620 (2006)

    MATH  Google Scholar 

  16. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordecht (1991)

    Book  MATH  Google Scholar 

  17. Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)

    Article  MATH  Google Scholar 

  18. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  19. Wang, X.Z., Tsang, E.C.C., Zhao, S.Y.: Learning fuzzy rules from fuzzy samples based on rough set technique. Information sciences 177, 4493–4514 (2007)

    Article  MATH  Google Scholar 

  20. Wu, W.Z., Zhang, W.X.: Constructive and axiomatic approaches of fuzzy approximation operators. Information sciences 159, 233–254 (2004)

    Article  MATH  Google Scholar 

  21. Yeung, D.S., Chen, D.-G., Tsang, E.C.C., Lee, J.W.T., et al.: On the generalization of fuzzy rough sets. IEEE Transactions on fuzzy systems 13, 343–361 (2005)

    Article  Google Scholar 

  22. Zadeh, L.A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  Google Scholar 

  23. Wu, W.-Z.: Attribute reduction based on evidence theory in incomplete decision systems. Information sciences 178, 1355–1371 (2008)

    Article  MATH  Google Scholar 

  24. Maji, P., Pal, S.K.: Rough-fuzzy C-medoids algorithm and selection of bio-basis for amino acid sequence analysis. IEEE transactions on knowledge and data engineering 19, 859–872 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Q., Chen, D., Yu, D., Pedrycz, W. (2009). Kernelized Fuzzy Rough Sets. In: Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds) Rough Sets and Knowledge Technology. RSKT 2009. Lecture Notes in Computer Science(), vol 5589. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02962-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02962-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02961-5

  • Online ISBN: 978-3-642-02962-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics