Integrated Likelihood in a Finitely Additive Setting | SpringerLink
Skip to main content

Integrated Likelihood in a Finitely Additive Setting

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2009)

Abstract

Without a clear, precise and rigorous mathematical frame, is the likelihood “per se” a proper tool to deal with statistical inference and to manage partial and vague information? Since (as Basu puts it) “the likelihood function is after all a bunch of conditional probabilities”, a proper discussion of the various extensions of a likelihood from a point function to a set function is carried out by looking at a conditional probability as a general non-additive “uncertainty” measure P(E| · ) on the set of conditioning events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basu, D.: Statistical Information and Likelihood. In: Ghosh, J.K. (ed.) A Collection of Critical Essays. Lecture Notes in Statistics, vol. 45. Springer, New York (1988)

    Google Scholar 

  2. Berger, J.O., Liseo, B., Wolpert, R.L.: Integrated likelihood methods for eliminating nuisance parameters. Statistical Science 14, 1–28 (1999)

    Article  MATH  Google Scholar 

  3. Berti, P., Fattorini, L., Rigo, P.: Eliminating nuisance parameters: two characterizations. Test 9(1), 133–148 (2000)

    Article  MATH  Google Scholar 

  4. Bhaskara Rao, K.P.S., Bhaskara Rao, M.: Theory of Charges. Academic Press, London (1983)

    MATH  Google Scholar 

  5. Ceccacci, S., Morici, C., Paneni, T.: Conditional probability as a function of the conditioning event: characterization of coherent enlargements. In: Proc. WUPES 2003, Hejnice, Czech Republic, pp. 35–45 (2003)

    Google Scholar 

  6. Coletti, G., Scozzafava, R.: Characterization of coherent conditional probabilities as a tool for their assessment and extension. Internat. J. Uncertainty Fuzziness Knowledge-Based Systems 4, 103–127 (1996)

    Article  MATH  Google Scholar 

  7. Coletti, G., Scozzafava, R.: From conditional events to conditional measures: a new axiomatic approach. Annals of Mathematics and Artificial Intelligence 32, 373–392 (2001)

    Article  MATH  Google Scholar 

  8. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Trends in Logic, vol. 15. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  9. Coletti, G., Scozzafava, R.: Coherent conditional probability as a measure of uncertainty of the relevant conditioning events. In: Nielsen, T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 407–418. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Coletti, G., Scozzafava, R.: Conditional Probability, Fuzzy Sets, and Possibility: a Unifying View. Fuzzy Sets and Systems 144, 227–249 (2004)

    Article  MATH  Google Scholar 

  11. Coletti, G., Scozzafava, R.: Conditional Probability and Fuzzy Information. Computational Statistics & Data Analysis 51, 115–132 (2006)

    Article  MATH  Google Scholar 

  12. de Finetti, B.: Sull’impostazione assiomatica del calcolo delle probabilità. Annali Univ. Trieste 19, 3–55 (1949); Engl. transl. in: Probability, Induction, Statistics, ch. 5. Wiley, London (1972)

    MATH  Google Scholar 

  13. Dubins, L.E.: Finitely additive conditional probability, conglomerability and disintegrations. Ann. Probab. 3, 89–99 (1975)

    Article  MATH  Google Scholar 

  14. Dubois, D.: Possibility theory and statistical reasoning. Computational statistics & data analysis 51(1), 47–69 (2006)

    Article  MATH  Google Scholar 

  15. Dubois, D., Moral, S., Prade, H.: A semantics for possibility theory based on likelihoods. J. of Mathematical Analysis and Applications 205, 359–380 (1997)

    Article  MATH  Google Scholar 

  16. Holzer, S.: On coherence and conditional prevision. Bollettino Unione Mat. Ital. C(VI), 441–460 (1985)

    Google Scholar 

  17. Krauss, P.H.: Representation of Conditional Probability Measures on Boolean Algebras. Acta Math. Acad. Scient. Hungar. 19, 229–241 (1968)

    Article  MATH  Google Scholar 

  18. Popper, K.R.: The Logic of Scientific Discovery. Routledge, London (1959)

    MATH  Google Scholar 

  19. Regazzini, E.: Finitely additive conditional probabilities. Rend. Sem. Mat. Fis. Milano 55, 69–89 (1985)

    Article  MATH  Google Scholar 

  20. Rényi, A.: On conditional probability spaces generated by a dimensionally ordered set of measures. Theor. Probab. Appl. 1, 61–71 (1956)

    Article  MATH  Google Scholar 

  21. Williams, P.M.: Notes on conditional previsions. School of Mathematical and Physical Sciences, University of Sussex, working paper (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coletti, G., Scozzafava, R., Vantaggi, B. (2009). Integrated Likelihood in a Finitely Additive Setting. In: Sossai, C., Chemello, G. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2009. Lecture Notes in Computer Science(), vol 5590. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02906-6_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02906-6_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02905-9

  • Online ISBN: 978-3-642-02906-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics