Abstract
In SAC 2006, Liskov introduced the weak ideal compression functions. He proved that a hash construction based on these functions is indifferentiable from the random oracle. In ICALP 2008, Hoch and Shamir applied Liskov’s idea and proved the indifferentiability of another hash construction. However, these proofs of indifferentiability can have gaps in certain situations. In this paper, we formalize these situations and propose the simulation method which covers these situations. In particular, we apply our simulation method to the latter proof of indifferentiability, and concretely analyze the security of the latter hash construction. We can derive a lower bound to find a collision in the concatenated hash construction, which covers the gaps of the original proof.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, Heidelberg (1990)
Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup [16], pp. 430–448
Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)
Damgård, I.: A design principle for hash functions. In: Brassard [1], pp. 416–427
Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the hash functions are weak. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 616–630. Springer, Heidelberg (2008)
Joux, A.: Multicollisions in iterated hash functions. Application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)
Kawachi, A., Numayama, A., Tanaka, K., Xagawa, K.: Approximation sampling and its application to security proofs in cryptography. In: Symposium on Cryptography and Information Security, pp. 3D1–1 (2009)
Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)
Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: Cramer [3], pp. 474–490
Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007)
Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)
Merkle, R.C.: One way hash functions and des. In: Brassard [1], pp. 428–446
National Institute of Standards and Technology. Secure hash standard. FIPS 180-2 (August 2002)
Numayama, A., Isshiki, T., Tanaka, K.: Security of digital signature schemes in weakened random oracle models. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 268–287. Springer, Heidelberg (2008)
Rivest, R.L.: The MD5 message-digest algorithm. Internet Request for Comments, RFC 1321 (April 1992)
Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621. Springer, Heidelberg (2005)
Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup [16], pp. 17–36
Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer [3], pp. 19–35
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Numayama, A., Tanaka, K. (2009). On the Weak Ideal Compression Functions. In: Boyd, C., González Nieto, J. (eds) Information Security and Privacy. ACISP 2009. Lecture Notes in Computer Science, vol 5594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02620-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-02620-1_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02619-5
Online ISBN: 978-3-642-02620-1
eBook Packages: Computer ScienceComputer Science (R0)