Side-Channel Leakage in Masked Circuits Caused by Higher-Order Circuit Effects | SpringerLink
Skip to main content

Side-Channel Leakage in Masked Circuits Caused by Higher-Order Circuit Effects

  • Conference paper
Advances in Information Security and Assurance (ISA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5576))

Included in the following conference series:

Abstract

Hardware masking is a well-known countermeasure against Side-Channel Attacks (SCA). Like many other countermeasures, the side-channel resistance of masked circuits is susceptible to low-level circuit effects. However, no detailed analysis is available that explains how, and to what extent, these low-level circuit effects are causing side-channel leakage. Our first contribution is a unified and consistent analysis to explain how glitches and inter-wire capacitance cause side-channel leakage on masked hardware. Our second contribution is to show that inter-wire capacitance and glitches are causing side-channel leakage of comparable magnitude according to HSPICE simulations. Our third contribution is to confirm our analysis with a successful DPA-attack on a 90nm COMS FPGA implementation of a glitch-free masked AES S-Box. According to existing literature, this circuit would be side-channel resistant, while according to our analysis and measurement, it shows side-channel leakage. Our conclusion is that circuit-level effects, not only glitches, present a practical concern for masking schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Chari, S., Jutla, C.S., Rohatgi, P.: Towards Sound Approaches to Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Mangard, S., Schramm, K.: Pinpointing the Side-channel Leakage of Masked AES Hardware Implementation. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smart Cards. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Resistant ASIC or FPGA Implementation. In: Proc. of DATE 2004, pp. 246–251 (2004)

    Google Scholar 

  8. Gierlilchs, B.: DPA-resistance without routing constraints? In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 107–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Rabaey, J.M., Chanadrakasan, A., Nikolic, B.: Digital Integrated Circuits: A Design Perspective, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  10. Weste, N.H.E., Harris, D.: CMOS VLSI Design: A Circuits and Systems Perspective, 3rd edn. (2005) ISBN: 0-321-14901-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Haider, S., Schaumont, P. (2009). Side-Channel Leakage in Masked Circuits Caused by Higher-Order Circuit Effects. In: Park, J.H., Chen, HH., Atiquzzaman, M., Lee, C., Kim, Th., Yeo, SS. (eds) Advances in Information Security and Assurance. ISA 2009. Lecture Notes in Computer Science, vol 5576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02617-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02617-1_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02616-4

  • Online ISBN: 978-3-642-02617-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics