Abstract
In this paper an adaptive iris segmentation algorithm is presented. In the proposed algorithm Otsu Threshold value, average gray level of the image, image size, Hough-Circle search are used for adaptive segmentation of irises. Otsu threshold is used for selecting threshold value in order to determine pupil location. Then Hough circle is utilized for pupillary boundary, and finally gradient search is used for the limbic boundary detection. The algorithm achieved 98% segmentation rate in batch processing of the CASIA version 1 (756 Images) and version 3 (CASIA-IrisV3-Interval, 2655 Images) databases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Jain, A., Bolle, R., Kanti, S.P.: Biometrics: Personal Identification in a Networked Society. Kluwer, Dordrecht (1998)
Adler, F.: Physiology of the Eye: Clinical Application, 4th edn. The C.V. Mosby Company, London (1965)
Daugman, J.: Biometric Personal Identification System Based on Iris Analysis. US Patent no. 5291560 (1994)
Daugman, J.: Statistical richness of visual phase information: Update on recognizing persons by iris patterns. Int. Journal of Computer Vision (2001)
Daugman, J.: Demodulation by complex-valued wavelets for stochastic pattern recognition. Int. Journal of Wavelets, Multiresolution and Information Processing (2003)
Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)
Wildes, R.: Iris recognition: An emerging biometric technology. Proc. of the IEEE 85(9), 1348–1363 (1997)
Boles, W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. on Signal Processing 46(4), 1185–1188 (1998)
Masek, L.: Recognition of Human Iris Patterns for Biometric Identification. BEng. Thesis. School of Computer Science and Software Engineering, The University of Western Australia (2003)
Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intelligence 25(12), 1519–1533 (2003)
Ma, L., Wang, Y.H., Tan, T.N.: Iris recognition based on multichannel gabor filtering. In: Proc. of the Fifth Asian Conference on Computer Vision, Australia, pp. 279–283 (2002)
Tisse, C., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. In: Proc. of Vision Interface, pp. 294–299 (2002)
Kanag, H., Xu, G.: Iris recognition system. Journal of Circuit and Systems 15(1), 11–15 (2000)
Yuan, W., Lin, Z., Xu, L.: A rapid iris location method based on the structure of human eyes. In: Proc. of 27th IEEE Annual Conferemce Engineering in Medicine and Biology, Shanghai, China, September 1-4 (2005)
Daugman, J.: New methods in iris recognition. IEEE Trans. Syst., Man, Cybern. B, Cybern. 37(5), 1168–1176 (2007)
Vatsa, M., Singh, R., Noore, A.: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing. IEEE Trans. on Systems, Man, and Cybernetics Part B: Cybernetics 38(4), 1021–1035 (2008)
Liu, X., Bowyer, K., Flynn, P.: Experiments with an improved iris segmentation algorithm. In: Fourth IEEE Workshop on Automatic Identification Advanced Technologies, vol. 17-18, pp. 118–123 (2005)
Cui, J., Wang, Y., Tan, T., Ma, L., Sun, Z.: A fast and robust iris localization method based on texture segmentation. In: Proc. SPIE, vol. 5404, pp. 401–408 (2004)
Abiyev, R., Altunkaya, K.: Neural Network Based Biometric Personel Identification with fast iris segmentation. Int. Journal of Control, Automation and Systems. 7(1) (2009)
Abiyev, R., Altunkaya, K.: Iris recognition for biometric personal identification using neural networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 554–563. Springer, Heidelberg (2007)
Daugman, J., Downing, C.: Recognizing iris texture by phase demodulation. In: IEEE Colloquium on Image Processing for Biometric Measurement, vol. 2, pp. 1–8 (1994)
Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An effective approach for iris recognition using phase-based image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(10), 1741–1756 (2008)
Sanchez-Avila, C., Sanchez-Reillo, R.: Iris-based biometric recognition using dyadic wavelet transform. IEEE Aerospace and Electronic Systems Magazine, 3–6 (2002)
Noh, S., Bae, K., Kim, J.: A novel method to extract features for iris recognition system. In: Proc. 4th Int. Conf. Audio and Video Based Biometric Person Authentication, pp. 838–844 (2003)
Mallat, S.: Zero crossings of a wavelet transform. IEEE Trans. Inf. Theory 37(4), 1019–1033 (1992)
Park, C., Lee, J., Smith, M., Park, K.: Iris based personal authentication using a normalized directional energy feature. In: Proc. 4th Int. Conf. Audio- and Video-Based Biometric Person Authentication, pp. 224–232 (2003)
Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI J. 23(2), 61–70 (2001)
Wang, Y., Han, J.Q.: Iris feature extraction using independent component analysis. In: Proc. 4th Int. Conf. Audio and Video Based Biometric Person Authentication, pp. 838–844 (2003)
Wang, Y., Han, J.Q.: Iris recognition using independent component analysis. In: Proc. of the Fourth Int. Conf. on Machine Learning and Cybernetics, Guangzhou (2005)
Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9, 62–66 (1979)
Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)
Trier, I.D., Taxt, T.: Evaluation of binarization methods for document images. IEEE Trans. on Pattern Analysis and Machine Intelligence (1995)
Zuo, J., Schmid, N.: An Automatic Algorithm for Evaluating the Precision of Iris Segmentation. In: IEEE Second Int. Conf. on Biometrics Theory, Applications and Systems (BTAS 2008), September 29 - October 1 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abiyev, R., Kilic, K. (2009). Adaptive Iris Segmentation. In: Park, J.H., Chen, HH., Atiquzzaman, M., Lee, C., Kim, Th., Yeo, SS. (eds) Advances in Information Security and Assurance. ISA 2009. Lecture Notes in Computer Science, vol 5576. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02617-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-02617-1_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02616-4
Online ISBN: 978-3-642-02617-1
eBook Packages: Computer ScienceComputer Science (R0)