On Selecting the Best Pre-processing Method for Affymetrix Genechips | SpringerLink
Skip to main content

On Selecting the Best Pre-processing Method for Affymetrix Genechips

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

Abstract

Affymetrix High Oligonucleotide expression arrays, also known as Affymetrix GeneChips, are widely used for the high-throughput assessment of gene expression of thousands of genes simultaneously. Although disputed by several authors, there are non-biological variations and systematic biases that must be removed as much as possible before an absolute expression level for every gene is assessed. Several pre-processing methods are available in the literature and five common ones (RMA, GCRMA, MAS5, dChip and VSN) and two customized Loess methods are benchmarked in terms of data variability, similarity of data distributions and correlation coefficient among replicated slides in a variety of real examples. Besides, it will be checked how the variant and invariant genes can influence on preprocessing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hochreiter, S., Clevert, D.A., Obermayer, K.: A new summarization method for affymetrix probe level data. Bioinformatics 22(8), 943–949 (2006)

    Article  Google Scholar 

  2. Zakharkin, S.O., Kim, K., Mehta, T., et al.: Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics 6, 214 (2005)

    Article  Google Scholar 

  3. Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: affy-analysis of Affymetrix GEneChip data at the probe level. Bioinformatics 20(3), 307–315 (2003)

    Article  Google Scholar 

  4. Bolstad, B.M., et al.: A Comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinf. 19, 185–193 (2002)

    Article  Google Scholar 

  5. Irizarry, R.A., Hobbs, B., Collin, F., et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)

    Article  MATH  Google Scholar 

  6. Affymetrix Microarray Suite Users Guide, Affymetrix, Santa Clara, v.5.0 edn. (2001)

    Google Scholar 

  7. Wu, Z., Irizarry, R., Gentleman, R., et al.: A model based background adjustement for oligonucleotide expression arrays. Journal of the American Statistical Association (2005)

    Google Scholar 

  8. Schadt, E.E., et al.: Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. Suppl., 120–125 (2001)

    Google Scholar 

  9. Huber, W., et al.: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl. 1), S96–S104 (2002)

    Article  Google Scholar 

  10. Li, C., Wong, W.H.: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98(1), 31–36 (2001)

    Article  MATH  Google Scholar 

  11. Affymetrix Microarray Suite Users Guide. Affymetrix, Santa Clara, v.4.0 edn. (1999)

    Google Scholar 

  12. Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5(10), Article R80 (2004)

    Google Scholar 

  13. Scholtens, D., Miron, A., Merchant, F., et al.: Analyzing factorial designed microarray experiments. Journal of Multivariate Analysis 90, 19–43 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiong, H., Zhang, D., Martyniuk, C.J., et al.: Using Generalized Procrustes Analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics 9(25) (2008)

    Google Scholar 

  15. Lim, W.K., Wang, K., et al.: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23, 282–288 (2007)

    Article  Google Scholar 

  16. Rojas, I., Pomares, H., et al.: Analysis of the functional block envolved in the design of radial basis function networks. Neural Processing Letters 12(1), 1–17 (2000)

    Article  MATH  Google Scholar 

  17. Irizarry, R.A., Bolstad, B.M., Collin, F., et al.: Summaries of Affymetrix GeneChip proble level data. Nucleic Acids 31(4) (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Florido, J.P., Pomares, H., Rojas, I., Calvo, J.C., Urquiza, J.M., Claros, M.G. (2009). On Selecting the Best Pre-processing Method for Affymetrix Genechips. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics