Abstract
Affymetrix High Oligonucleotide expression arrays, also known as Affymetrix GeneChips, are widely used for the high-throughput assessment of gene expression of thousands of genes simultaneously. Although disputed by several authors, there are non-biological variations and systematic biases that must be removed as much as possible before an absolute expression level for every gene is assessed. Several pre-processing methods are available in the literature and five common ones (RMA, GCRMA, MAS5, dChip and VSN) and two customized Loess methods are benchmarked in terms of data variability, similarity of data distributions and correlation coefficient among replicated slides in a variety of real examples. Besides, it will be checked how the variant and invariant genes can influence on preprocessing performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hochreiter, S., Clevert, D.A., Obermayer, K.: A new summarization method for affymetrix probe level data. Bioinformatics 22(8), 943–949 (2006)
Zakharkin, S.O., Kim, K., Mehta, T., et al.: Sources of variation in Affymetrix microarray experiments. BMC Bioinformatics 6, 214 (2005)
Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: affy-analysis of Affymetrix GEneChip data at the probe level. Bioinformatics 20(3), 307–315 (2003)
Bolstad, B.M., et al.: A Comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinf. 19, 185–193 (2002)
Irizarry, R.A., Hobbs, B., Collin, F., et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003)
Affymetrix Microarray Suite Users Guide, Affymetrix, Santa Clara, v.5.0 edn. (2001)
Wu, Z., Irizarry, R., Gentleman, R., et al.: A model based background adjustement for oligonucleotide expression arrays. Journal of the American Statistical Association (2005)
Schadt, E.E., et al.: Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. Suppl., 120–125 (2001)
Huber, W., et al.: Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl. 1), S96–S104 (2002)
Li, C., Wong, W.H.: Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. USA 98(1), 31–36 (2001)
Affymetrix Microarray Suite Users Guide. Affymetrix, Santa Clara, v.4.0 edn. (1999)
Gentleman, R.C., et al.: Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5(10), Article R80 (2004)
Scholtens, D., Miron, A., Merchant, F., et al.: Analyzing factorial designed microarray experiments. Journal of Multivariate Analysis 90, 19–43 (2004)
Xiong, H., Zhang, D., Martyniuk, C.J., et al.: Using Generalized Procrustes Analysis (GPA) for normalization of cDNA microarray data. BMC Bioinformatics 9(25) (2008)
Lim, W.K., Wang, K., et al.: Comparative analysis of microarray normalization procedures: effects on reverse engineering gene networks. Bioinformatics 23, 282–288 (2007)
Rojas, I., Pomares, H., et al.: Analysis of the functional block envolved in the design of radial basis function networks. Neural Processing Letters 12(1), 1–17 (2000)
Irizarry, R.A., Bolstad, B.M., Collin, F., et al.: Summaries of Affymetrix GeneChip proble level data. Nucleic Acids 31(4) (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Florido, J.P., Pomares, H., Rojas, I., Calvo, J.C., Urquiza, J.M., Claros, M.G. (2009). On Selecting the Best Pre-processing Method for Affymetrix Genechips. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_106
Download citation
DOI: https://doi.org/10.1007/978-3-642-02478-8_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02477-1
Online ISBN: 978-3-642-02478-8
eBook Packages: Computer ScienceComputer Science (R0)