Epidemic Self-synchronization in Complex Networks | SpringerLink
Skip to main content

Epidemic Self-synchronization in Complex Networks

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

In this article we present and evaluate an epidemic algorithm for the synchronization of coupled Kuramoto oscillators in complex network topologies. The algorithm addresses the problem of providing a global, synchronous notion of time in complex, dynamic Peer-to-Peer topologies. For this it requires a periodic coupling of nodes to a single random one-hop-neighbor. The strength of the nodes’ couplings is given as a function of the degrees of both coupling partners. We study the emergence of self-synchronization and the resilience against node failures for different coupling strength functions and network topologies. For Watts/Strogatz networks, we observe critical behavior suggesting that small-world properties of the underlying topology are crucial for self-synchronization to occur. From simulations on networks under the effect of churn, we draw the conclusion that special coupling functions can be used to enhance synchronization resilience in power-law Peer-to-Peer topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics 77, 137–185 (2005)

    Article  Google Scholar 

  2. Babaoglu, O., Binci, T., Jelasity, M., Montresor, A.: Firefly-inspired heartbeat synchronization in overlay networks. In: SASO 2007: Proceedings of the First International Conference on Self-Adaptive and Self-Organizing Systems, Washington, DC, USA, 2007, pp. 77–86. IEEE Computer Society, Los Alamitos (2007)

    Chapter  Google Scholar 

  3. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5) (July 2002)

    Google Scholar 

  5. di Bernardo, M., Garofalo, F., Sorrentino, F.: Effects of degree correlation on the synchronizability of networks of nonlinear oscillators. In: Proceedings of the 44th IEEE Conference on Decision and Control (CDC), 2005 and 2005 European Control Conference (ECC), December 2005, pp. 4616–4621 (2005)

    Google Scholar 

  6. Ermentrout, B.: Synchronization in a pool of mutually coupled oscillators with random frequencies. Journal of Mathematical Biology 22(1), 1–9 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ermentrout, B.: An adaptive model for synchrony in the firefly pteroptyx malaccae. Journal of Mathematical Biology 29(6), 571–585 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ermentrout, G.B., Kopell, N.: Frequency plateaus in a chain of weakly coupled oscillators, i. SIAM Journal on Mathematical Analysis 15(2), 215–237 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hwang, D.-U., Chavez, M., Amann, A., Boccaletti, S.: Synchronization in complex networks with age ordering. Physical Review Letters 94(13), 138701 (2005)

    Article  Google Scholar 

  10. Jadbabaie, A., Motee, N., Barahona, M.: On the stability of the kuramoto model of coupled nonlinear oscillators. In: Proceedings of the American Control Conference, pp. 4296–4301 (2004)

    Google Scholar 

  11. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

    Article  Google Scholar 

  12. Jelasity, M., van Steen, M.: Large-scale newscast computing on the Internet. Tech. Rep. IR-503, Vrije Universiteit Amsterdam, Department of Computer Science, Amsterdam, The Netherlands (October 2002)

    Google Scholar 

  13. Kuramoto, Y.: Self-entrainment of a population of coupled nonlinear oscillators. In: International symposium on mathematical problems in theoretical physics, pp. 420–422. Springer, Heidelberg (1975)

    Chapter  Google Scholar 

  14. Li, X.: Uniform synchronous criticality of diversely random complex networks. Physica A: Statistical Mechanics and its Applications 360, 629–636 (2006)

    Article  Google Scholar 

  15. Li, X.: The role of degree-weighted couplings in the synchronous onset of kuramoto oscillator networks. Physica A: Statistical Mechanics and its Applications 387(26), 6624–6630 (2008)

    Article  Google Scholar 

  16. Lucarelli, D., Wang, I.-J.: Decentralized synchronization protocols with nearest neighbor communication. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 62–68. ACM, New York (2004)

    Google Scholar 

  17. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moreno, Y., Pacheco, A.F.: Synchronization of kuramoto oscillators in scale-free networks. EPL (Europhysics Letters) 68(4), 603–609 (2004)

    Article  Google Scholar 

  19. Motter, A.E., Zhou, C., Kurths, J.: Network synchronization, diffusion, and the paradox of heterogeneity. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 71(1), 016116 (2005)

    Article  Google Scholar 

  20. Peskin, C.S.: Mathematical aspects of heart physiology. Technical report, Courant Institute of Mathematical Sciences (1975)

    Google Scholar 

  21. Scholtes, I., Botev, J., Esch, M., Hoehfeld, A., Schloss, H., Zech, B.: Topgen - internet router-level topology generation based on technology constraints. In: Proceedings of the First International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools) (February 2008)

    Google Scholar 

  22. Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143(1-4), 1–20 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion (2003)

    Google Scholar 

  24. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393 (1998)

    Google Scholar 

  25. Wiener, N.: Nonlinear Problems in Random Theory. MIT Press, Cambridge (1958)

    MATH  Google Scholar 

  26. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. Journal of Theoretical Biology 16, 15–42 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Scholtes, I., Botev, J., Esch, M., Sturm, P. (2009). Epidemic Self-synchronization in Complex Networks. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02469-6_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02469-6_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02468-9

  • Online ISBN: 978-3-642-02469-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics