Analyzing Domestic Violence with Topographic Maps: A Comparative Study | SpringerLink
Skip to main content

Analyzing Domestic Violence with Topographic Maps: A Comparative Study

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Included in the following conference series:

Abstract

Topographic maps are an appealing exploratory instrument for discovering new knowledge from databases. During the recent years, several variations on the Self Organizing Maps (SOM) were introduced in the literature. In this paper, the toroidal Emergent SOM tool and the spherical SOM are used to analyze a text corpus consisting of police reports of all violent incidents that occurred during the first quarter of 2006 in the police region Amsterdam-Amstelland (The Netherlands). It is demonstrated that spherical topographic maps provide a powerful instrument for analyzing this dataset. In addition, the performance of the toroidal Emergent SOM is compared to that of the spherical SOM, and it turned out to be superior to that of an ordinary classifier, applied directly to the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Keus, R., Kruijff, M.S.: Huiselijk geweld, draaiboek voor de aanpak. Directie Preventie, Jeugd en Sanctiebeleid van de Nederlandse justitie (2000)

    Google Scholar 

  2. Watts, C., Timmerman, C.: Violence against women: global scope and magnitude. The Lancet 359(9313), 1232–1237 (RMID 1155557)

    Google Scholar 

  3. Waits, K.: The criminal Justice System’s response to Battering: Understanding the problem, forging the solutions. Washington Law Review 60, 267–330 (1984-1985)

    Google Scholar 

  4. Minleer-Black, C.: Domestic violence: Findings from a new British Crime Survey self-completion questionnaire. Home Office Research Study, London (1999)

    Google Scholar 

  5. Vincent, J.P., Jouriles, E.N.: Domestic violence. Guidelines for research-informed practice. Jessica Kingsley Publishers, London (2000)

    Google Scholar 

  6. Ritter, H.: Non-Euclidean Self-Organizing Maps, pp. 97–109. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  7. Kohonen, T.: Self-Organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ultsch, A., Moerchen, F.: ESOM-Maps: Tools for clustering, visualization, and classification with Emergent SOM. Technical Report Dept. of Mathematics and Computer Science, University of Marburg, Germany, No. 46 (2005)

    Google Scholar 

  9. Ultsch, A., Hermann, L.: Architecture of emergent self-organizing maps to reduce projection errors. In: Proc. ESANN 2005, pp. 1–6 (2005)

    Google Scholar 

  10. Ultsch, A.: Density Estimation and Visualization for Data containing Clusters of unknown Structure. In: Proc. GfKI 2004 Dortmund, pp. 232–239 (2004)

    Google Scholar 

  11. Ultsch, A.: Maps for visualization of high-dimensional Data Spaces. In: Proc. WSOM 2003, Kyushu, Japan, pp. 225–230 (2003)

    Google Scholar 

  12. Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for Exploratory Data Analysis. In: Proc. Intl. Neural Networks Conf., pp. 305–308 (1990)

    Google Scholar 

  13. Tokutaka, H., BLOSSOM Software Tool, http://www.somj.com

  14. Nakatsuka, D., Oyabu, M.: Application of Spherical SOM in Clustering. In: Proc. Workshop on Self-Organizing Maps (WSOM 2003), pp. 203–207 (2003)

    Google Scholar 

  15. Van Hulle, M.: Faithful Representations and Topographic Maps from distortion based to information based Self-Organization. Wiley, New York (2000)

    Google Scholar 

  16. Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on pattern analysis and machine intelligence 27(8) (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Poelmans, J., Elzinga, P., Viaene, S., Dedene, G., Van Hulle, M.M. (2009). Analyzing Domestic Violence with Topographic Maps: A Comparative Study. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics