MLR-Index: An Index Structure for Fast and Scalable Similarity Search in High Dimensions | SpringerLink
Skip to main content

MLR-Index: An Index Structure for Fast and Scalable Similarity Search in High Dimensions

  • Conference paper
Scientific and Statistical Database Management (SSDBM 2009)

Abstract

High-dimensional indexing has been very popularly used for performing similarity search over various data types such as multimedia (audio/image/video) databases, document collections, time-series data, sensor data and scientific databases. Because of the curse of dimensionality, it is already known that well-known data structures like kd-tree, R-tree, and M-tree suffer in their performance over high-dimensional data space which is inferior to a brute-force approach linear scan. In this paper, we focus on an approximate nearest neighbor search for two different types of queries: r-Range search and k-NN search. Adapting a novel concept of a ring structure, we define a new index structure MLR-Index (Multi-Layer Ring-based Index) in a metric space and propose time and space efficient algorithms with high accuracy. Evaluations through comprehensive experiments comparing with the best-known high-dimensional indexing method LSH show that our approach is faster for a similar accuracy, and shows higher accuracy for a similar response time than LSH.

The work was supported in part by the U.S. NSF grants CNS-0520182, IIS-0513678, IIS-0842769, CAREER CNS-0448246, ITR CMS-0427089 and Air Force Office of Scientific Research MURI award FA9550-08-1-0265. Any opinions, findings, and conclusions expressed here are those of the authors and do not necessarily reflect the views of the funding agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB, pp. 194–205 (1998)

    Google Scholar 

  2. Beyer, K.S., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Tuncel, E., Ferhatosmanoglu, H., Rose, K.: Vq-index: an index structure for similarity searching in multimedia databases. In: MULTIMEDIA, pp. 543–552 (2002)

    Google Scholar 

  4. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: VLDB, pp. 518–529 (1999)

    Google Scholar 

  5. Jeong, J., Nang, J.: An efficient bitmap indexing method for similarity search in high dimensional multimedia databases 2, 815–818 (2004)

    Google Scholar 

  6. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe lsh: efficient indexing for high-dimensional similarity search. In: VLDB, pp. 950–961 (2007)

    Google Scholar 

  7. Wong, B., Slivkins, A., Sirer, E.G.: Meridian: a lightweight network location service without virtual coordinates. SIGCOMM Comput. Commun. Rev. 35(4), 85–96 (2005)

    Article  Google Scholar 

  8. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: An adaptable, symmetric multikey file structure. ACM Trans. Database Syst. 9(1), 38–71 (1984)

    Article  Google Scholar 

  9. Robinson, J.T.: The k-d-b-tree: a search structure for large multidimensional dynamic indexes. In: SIGMOD, pp. 10–18 (1981)

    Google Scholar 

  10. Finkel, R.A., Bentley, J.L.: Quad trees: A data structure for retrieval on composite keys. Acta Inf. 4, 1–9 (1974)

    Article  MATH  Google Scholar 

  11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  12. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The r+-tree: A dynamic index for multi-dimensional objects. In: VLDB, pp. 507–518 (1987)

    Google Scholar 

  13. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec. 19(2), 322–331 (1990)

    Article  Google Scholar 

  14. Berchtold, S., Keim, D.A., Kriegel, H.P.: The x-tree: An index structure for high-dimensional data. In: VLDB, pp. 28–39 (1996)

    Google Scholar 

  15. Katayama, N., Satoh, S.: The sr-tree: an index structure for high-dimensional nearest neighbor queries. SIGMOD Rec. 26(2), 369–380 (1997)

    Article  Google Scholar 

  16. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)

    Google Scholar 

  17. Lin, K.I., Jagadish, H.V., Faloutsos, C.: The tv-tree: an index structure for high-dimensional data. The VLDB Journal 3(4), 517–542 (1994)

    Article  Google Scholar 

  18. Lomet, D.B., Salzberg, B.: The hb-tree: a multiattribute indexing method with good guaranteed performance. ACM Trans. Database Syst. 15(4), 625–658 (1990)

    Article  Google Scholar 

  19. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv. 33(3), 322–373 (2001)

    Article  Google Scholar 

  20. Ortega-Binderberger, M., Porkaew, K., Mehrotra, S.: Corel Image Features Data Set (1999), http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features

  21. Blackard, J.A., Dean, D.J., Anderson, C.W.: Covertype Data Set (1998), http://archive.ics.uci.edu/ml/datasets/Covertype

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Malik, R. et al. (2009). MLR-Index: An Index Structure for Fast and Scalable Similarity Search in High Dimensions. In: Winslett, M. (eds) Scientific and Statistical Database Management. SSDBM 2009. Lecture Notes in Computer Science, vol 5566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02279-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02279-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02278-4

  • Online ISBN: 978-3-642-02279-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics