Abstract
Certainly, one of the prominent ideas of Professor Mira was that it is absolutely mandatory to specify the mechanisms and/or processes underlying each task and inference mentioned in an architecture in order to make operational that architecture. The conjecture of the last fifteen years of joint research of Professor Mira and our team at University of Castilla-La Mancha has been that any bottom-up organization may be made operational using two biologically inspired methods called “algorithmic lateral inhibition”, a generalization of lateral inhibition anatomical circuits, and “accumulative computation”, a working memory related to the temporal evolution of the membrane potential. This paper is dedicated to the computational formulations of both methods, which have led to quite efficient solutions of problems related to motion-based computer vision.
This article is dedicated to the memory of our close master and friend, Professor José Mira.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deco, G., Rolls, E.T.: A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research 44(6), 621–642 (2004)
Deco, G., Rolls, E.T.: Short-term memory, and action selection: A unifying theory. Progress in Neurobiology 76(4), 236–256 (2005)
Delgado, A.E., Mira, J., Moreno-DÍaz, R.: A neurocybernetic model of modal co-operative decision in the Kilmer-McCulloch space. Kybernetes 18(3), 48–57 (1989)
Delgado, A.E., Mira, J.: Algorithmic lateral inhibition as a generic method for visual information processing with potential applications in robotics. Computational Intelligent Systems for Applied Research, 477–484 (2002)
Fernández, M.A.: Una arquitectura modular de inspiración biológica con capacidad de aprendizaje para el análisis de movimiento en secuencias de imagen en tiempo real, PhD Thesis, UNED, Madrid, Spain (1995)
Fernández, M.A., Mira, J., López, M.T., Alvarez, J.R., Manjarrés, A., Barro, S.: Local accumulation of persistent activity at synaptic level: Application to motion analysis. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 137–143. Springer, Heidelberg (1995)
Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J.: Length-Speed Ratio (LSR) as a characteristic for moving elements real-time classification. Real-Time Imaging 9(1), 49–59 (2003)
Fernández-Caballero, A.: Modelos de interacción lateral en computación acumulativa para la obtención de siluetas, PhD Thesis, UNED, Madrid, Spain (2001)
Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)
Fernández-Caballero, A., Mira, J., Fernández, M.A., Delgado, A.E.: On motion detection through a multi-layer neural network architecture. Neural Networks 16(2), 205–222 (2003)
Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50, 341–364 (2003)
Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36(5), 1131–1142 (2003)
Heinke, D., Humphreys, G.W.: Computational models of visual selective attention: A review. Connectionist Models in Cognitive Psychology 1(4), 273–312 (2005)
Heinke, D., Humphreys, G.W., Tweed, C.L.: Top-down guidance of visual search: A computational account. Visual Cognition 14(4-8), 985–1005 (2006)
López, M.T.: Modelado computacional de los mecanismos de atención selectiva mediante redes de interacción lateral, PhD Thesis, UNED, Madrid, Spain (2004)
López, M.T., Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Algorithmic lateral inhibition method in dynamic and selective visual attention task: Application to moving objects detection and labeling. Expert Systems with Applications 31(3), 570–594 (2006)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Dynamic visual attention model in image sequences. Image and Vision Computing 25(5), 597–613 (2007)
López-Valles, J.M.: Estereopsis y movimiento. Modelo de disparidad de carga: Un enfoque con inspiración biológica, PhD Thesis, Universidad de Castilla-La Mancha, Albacete, Spain (2004)
López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A., López, M.T., Mira, J., Delgado, A.E.: Motion-based stereovision model with potential utility in robot navigation. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS, vol. 3533, pp. 16–25. Springer, Heidelberg (2005)
López-Valles, J.M., Fernández, M.A., Fernández-Caballero, A.: Stereovision depth analysis by two-dimensional motion charge memories. Pattern Recognition Letters 28(1), 20–30 (2007)
Marr, D.: Vision. A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman and Company, New York (1982)
Mira, J., Delgado, A.E.: What can we compute with lateral inhibition circuits? In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 38–46. Springer, Heidelberg (2001)
Mira, J., Fernández, M.A., López, M.T., Delgado, A.E., Fernández-Caballero, A.: A model of neural inspiration for local accumulative computation. In: Moreno-Díaz Jr., R., Pichler, F. (eds.) EUROCAST 2003. LNCS, vol. 2809, pp. 427–435. Springer, Heidelberg (2003)
Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The algorithmic lateral inhibition method. Expert Systems with Applications 27(2), 169–185 (2004)
Mira, J., Delgado, A.E.: On how the computational paradigm can help us to model and interpret the neural function. Natural Computing 6(3), 207–209 (2006)
Mira, J.: The Semantic Gap, Preface of Bio-inspired Modeling of Cognitive Tasks. In: IWINAC 2007. LNCS, vol. 4528. Springer, Heidelberg (2007)
Mira, J.: Symbols versus connections: 50 years of artificial intelligence. Neurocomputing 71(4-6), 671–680 (2008)
Newell, A.: The Knowledge Level. AI Magazine, 1–20 (Summer 1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernández-Caballero, A., López, M.T., Fernández, M.A., López-Valles, J.M. (2009). Revisiting Algorithmic Lateral Inhibition and Accumulative Computation. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-02264-7_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02263-0
Online ISBN: 978-3-642-02264-7
eBook Packages: Computer ScienceComputer Science (R0)