Basic Image Features (BIFs) Arising from Approximate Symmetry Type | SpringerLink
Skip to main content

Basic Image Features (BIFs) Arising from Approximate Symmetry Type

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5567))

Abstract

We consider detection of local image symmetry using linear filters. We prove a simple criterion for determining if a filter is sensitive to a group of symmetries. We show that derivative-of-Gaussian (DtG) filters are excellent at detecting local image symmetry. Building on this, we propose a very simple algorithm that, based on the responses of a bank of six DtG filters, classifies each location of an image into one of seven Basic Image Features (BIFs). This effectively and efficiently realizes Marr’s proposal for an image primal sketch. We summarize results on the use of BIFs for texture classification, object category detection, and pixel classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, Y.X., Collins, R.T., Tsin, Y.H.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 354–371 (2004)

    Article  Google Scholar 

  2. Scognamillo, R., et al.: A feature-based model of symmetry detection. Proceedings of the Royal Society of London Series B-Biological Sciences 270(1525), 1727–1733 (2003)

    Article  Google Scholar 

  3. Mellor, M., Brady, M.: A new technique for local symmetry estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 38–49. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Bonneh, Y., Reisfeld, D., Yeshurun, Y.: Quantification of local symmetry - application to texture-discrimination. Spatial Vision 8(4), 515–530 (1994)

    Article  Google Scholar 

  5. Mancini, S., Sally, S.L., Gurnsey, R.: Detection of symmetry and anti-symmetry. Vision Research 45(16), 2145–2160 (2005)

    Article  Google Scholar 

  6. Baylis, G.C., Driver, J.: Perception of symmetry and repetition within and across visual shapes: Part-descriptions and object-based attention. Visual Cognition 8(2), 163–196 (2001)

    Article  Google Scholar 

  7. Marr, D.: Vision. W H Freeman & co., New York (1982)

    Google Scholar 

  8. Griffin, L.D.: Symmetries of 1-D Images. Journal of Mathematical Imaging and Vision 31(2-3), 157–164 (2008)

    Article  MathSciNet  Google Scholar 

  9. Crosier, M., Griffin, L.D.: Texture classification with a dictionary of basic image features. In: CVPR 2008. IEEE, Los Alamitos (2008)

    Google Scholar 

  10. Lillholm, M., Griffin, L.D.: Statistics and category systems for the shape index descriptor of local image. Image and Vision Computing (in press) (2008)

    Google Scholar 

  11. Lillholm, M., Griffin, L.D.: Novel image feature alphabets for object recognition. In: ICPR 2008 (2008)

    Google Scholar 

  12. Griffin, L.D.: Symmetries of 2D images: cases without periodic translation. Journal of Mathematical Imaging and Vision (in press)

    Google Scholar 

  13. Griffin, L.D.: The 2nd order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1355–1366 (2007)

    Article  Google Scholar 

  14. Griffin, L.D., Lillholm, M.: Symmetry-sensitivity of derivative of gaussian filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press)

    Google Scholar 

  15. Bieberbach, L.: Über die bewegungsgruppen der euklidischen raume I. Mathematische Annalen 70, 297 (1911)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conway, J.H., et al.: On three-dimensional space groups. Contributions to Algebra and Geometry 42(2), 475–507 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. WH Freeman & co., New York (1987)

    MATH  Google Scholar 

  18. Schattschneider, D.: MC Escher. Visions of Symmetry. Plenum Press (1990)

    Google Scholar 

  19. Holser, W.T.: Classification of symmetry groups. Acta Crystallographica 14, 1236–1242 (1961)

    Article  Google Scholar 

  20. Loeb, A.A.: Color and Symmetry. Robert E. Krieger (1978)

    Google Scholar 

  21. Klein, F.: A comparative review of recent researches in geometry (trans. by MW Haskell). Bulletin of the New York Mathematical Society 2, 215–249 (1892)

    Article  Google Scholar 

  22. Koenderink, J.J., van Doorn, A.J.: Image processing done right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 158–172. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Cayley, A.: Sixth memoir upon the quantics. Philosophical Transactions of the Royal Society 149, 61–70 (1859)

    Article  Google Scholar 

  24. Koenderink, J.J., van Doorn, A.J.: Generic Neighborhood Operators. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(6), 597–605 (1992)

    Article  Google Scholar 

  25. Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: CVPR 2003. IEEE, Los Alamitos (2003)

    Google Scholar 

  26. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1), 61–81 (2005)

    Article  Google Scholar 

  27. Hayman, E., et al.: On the signifigance of real-world conditions for material classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  28. Zhang, J., et al.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: CVPR 2006 (2006)

    Google Scholar 

  29. Perronnin, F., et al.: Adapted vocabularies for generic visual categorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 464–475. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Varma, M., Zisserman, A.: Unifying Statistical Texture Classification Frameworks. Image and Vision Computing (in press) (2005)

    Google Scholar 

  31. Cula, O.G., Dana, K.J.: Compact representation of bidirectional texture functions. In: CVPR 2001. IEEE, Los Alamitos (2001)

    Google Scholar 

  32. Lazebnik, S.C., Schmid, C., Ponce, J.: A spare texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1265–1278 (2005)

    Article  Google Scholar 

  33. Csurka, G., et al.: Visual categorization with a bag of keypoints. In: ECCV 2004, pp. 1–22 (2004)

    Google Scholar 

  34. Lowe, D.G.: Towards a computational model for object recognition in IT cortex. In: Biologically Motivated Computer Vision, Proceeding, pp. 20–31 (2000)

    Google Scholar 

  35. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Griffin, L.D., Lillholm, M., Crosier, M., van Sande, J. (2009). Basic Image Features (BIFs) Arising from Approximate Symmetry Type. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02256-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02255-5

  • Online ISBN: 978-3-642-02256-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics