Abstract
We consider detection of local image symmetry using linear filters. We prove a simple criterion for determining if a filter is sensitive to a group of symmetries. We show that derivative-of-Gaussian (DtG) filters are excellent at detecting local image symmetry. Building on this, we propose a very simple algorithm that, based on the responses of a bank of six DtG filters, classifies each location of an image into one of seven Basic Image Features (BIFs). This effectively and efficiently realizes Marr’s proposal for an image primal sketch. We summarize results on the use of BIFs for texture classification, object category detection, and pixel classification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Liu, Y.X., Collins, R.T., Tsin, Y.H.: A computational model for periodic pattern perception based on frieze and wallpaper groups. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 354–371 (2004)
Scognamillo, R., et al.: A feature-based model of symmetry detection. Proceedings of the Royal Society of London Series B-Biological Sciences 270(1525), 1727–1733 (2003)
Mellor, M., Brady, M.: A new technique for local symmetry estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 38–49. Springer, Heidelberg (2005)
Bonneh, Y., Reisfeld, D., Yeshurun, Y.: Quantification of local symmetry - application to texture-discrimination. Spatial Vision 8(4), 515–530 (1994)
Mancini, S., Sally, S.L., Gurnsey, R.: Detection of symmetry and anti-symmetry. Vision Research 45(16), 2145–2160 (2005)
Baylis, G.C., Driver, J.: Perception of symmetry and repetition within and across visual shapes: Part-descriptions and object-based attention. Visual Cognition 8(2), 163–196 (2001)
Marr, D.: Vision. W H Freeman & co., New York (1982)
Griffin, L.D.: Symmetries of 1-D Images. Journal of Mathematical Imaging and Vision 31(2-3), 157–164 (2008)
Crosier, M., Griffin, L.D.: Texture classification with a dictionary of basic image features. In: CVPR 2008. IEEE, Los Alamitos (2008)
Lillholm, M., Griffin, L.D.: Statistics and category systems for the shape index descriptor of local image. Image and Vision Computing (in press) (2008)
Lillholm, M., Griffin, L.D.: Novel image feature alphabets for object recognition. In: ICPR 2008 (2008)
Griffin, L.D.: Symmetries of 2D images: cases without periodic translation. Journal of Mathematical Imaging and Vision (in press)
Griffin, L.D.: The 2nd order local-image-structure solid. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(8), 1355–1366 (2007)
Griffin, L.D., Lillholm, M.: Symmetry-sensitivity of derivative of gaussian filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press)
Bieberbach, L.: Über die bewegungsgruppen der euklidischen raume I. Mathematische Annalen 70, 297 (1911)
Conway, J.H., et al.: On three-dimensional space groups. Contributions to Algebra and Geometry 42(2), 475–507 (2001)
Grünbaum, B., Shephard, G.C.: Tilings and Patterns. WH Freeman & co., New York (1987)
Schattschneider, D.: MC Escher. Visions of Symmetry. Plenum Press (1990)
Holser, W.T.: Classification of symmetry groups. Acta Crystallographica 14, 1236–1242 (1961)
Loeb, A.A.: Color and Symmetry. Robert E. Krieger (1978)
Klein, F.: A comparative review of recent researches in geometry (trans. by MW Haskell). Bulletin of the New York Mathematical Society 2, 215–249 (1892)
Koenderink, J.J., van Doorn, A.J.: Image processing done right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 158–172. Springer, Heidelberg (2002)
Cayley, A.: Sixth memoir upon the quantics. Philosophical Transactions of the Royal Society 149, 61–70 (1859)
Koenderink, J.J., van Doorn, A.J.: Generic Neighborhood Operators. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(6), 597–605 (1992)
Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: CVPR 2003. IEEE, Los Alamitos (2003)
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision 62(1), 61–81 (2005)
Hayman, E., et al.: On the signifigance of real-world conditions for material classification. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 253–266. Springer, Heidelberg (2004)
Zhang, J., et al.: Local features and kernels for classification of texture and object categories: a comprehensive study. In: CVPR 2006 (2006)
Perronnin, F., et al.: Adapted vocabularies for generic visual categorization. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 464–475. Springer, Heidelberg (2006)
Varma, M., Zisserman, A.: Unifying Statistical Texture Classification Frameworks. Image and Vision Computing (in press) (2005)
Cula, O.G., Dana, K.J.: Compact representation of bidirectional texture functions. In: CVPR 2001. IEEE, Los Alamitos (2001)
Lazebnik, S.C., Schmid, C., Ponce, J.: A spare texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1265–1278 (2005)
Csurka, G., et al.: Visual categorization with a bag of keypoints. In: ECCV 2004, pp. 1–22 (2004)
Lowe, D.G.: Towards a computational model for object recognition in IT cortex. In: Biologically Motivated Computer Vision, Proceeding, pp. 20–31 (2000)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Griffin, L.D., Lillholm, M., Crosier, M., van Sande, J. (2009). Basic Image Features (BIFs) Arising from Approximate Symmetry Type. In: Tai, XC., Mørken, K., Lysaker, M., Lie, KA. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2009. Lecture Notes in Computer Science, vol 5567. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02256-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-02256-2_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02255-5
Online ISBN: 978-3-642-02256-2
eBook Packages: Computer ScienceComputer Science (R0)