Roulette Wheel Graph Colouring for Solving Examination Timetabling Problems | SpringerLink
Skip to main content

Roulette Wheel Graph Colouring for Solving Examination Timetabling Problems

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5573))

Abstract

This work presents a simple graph based heuristic that employs a roulette wheel selection mechanism for solving exam timetabling problems. We arrange exams in non-increasing order of the number of conflicts (degree) that they have with other exams. The difficulty of each exam to be scheduled is estimated based on the degree of exams in conflict. The degree determines the size of a segment in a roulette wheel, with a larger degree giving a larger segment. The roulette wheel selection mechanism selects an exam if the generated random number falls within the exam’s segment. This overcomes the problem of repeatedly choosing and scheduling the same sequence of exams. We utilise the proposed Roulette Wheel Graph Colouring heuristic on the un-capacitated Carter’s benchmark datasets. Results showed that this simple heuristic is capable of producing feasible solutions for all 13 instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah, S., Burke, E.K.: A Multi-Start Large Neighbourhood Search Approach with Local Search Methods for Examination Timetabling. In: Long, D., Smith, S.F., Borrajo, D., McCluskey, L. (eds.) ICAPS 2006, Cumbria, UK, pp. 334–337 (2006)

    Google Scholar 

  2. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple heuristic orderings for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Ayob, M., Malik, A.M.A., Abdullah, S., Hamdan, A.R., Kendall, G., Qu, R.: Solving a Practical Examination Timetabling Problem: A Case Study. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 611–624. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Baker, J.: Reducing Bias and Inefficiency in the Selection Algorithm. In: Proceeding of the Second International Conference on Genetic Algorithms (ICGA 1987), pp. 14–21. L. Erlbaum Associates Inc., Hillsdale (1987)

    Google Scholar 

  5. Burke, E.K., Bykov, Y., Newall, J.P., Petrovic, S.: A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Transactions on Operations Engineering 36, 509–528 (2004)

    Article  Google Scholar 

  6. Burke, E.K., Eckersley, A.J., McCollum, B., Petrovic, S., Qu, R.: Hybrid Variable Neighbourhood Approaches to University Exam Timetabling. European Journal of Operational Research (to appear)

    Google Scholar 

  7. Burke, E.K., Elliman, D.G., Weare, R.F.: A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems. In: Proceedings of the 6th International Conference on Genetic Algorithms (ICGA 1995), pp. 605–610. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  8. Burke, E.K., Kingston, J., de Werra, D.: Applications to timetabling. In: Gross, J., Yellen, J. (eds.) Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press, Boca Raton (2004)

    Google Scholar 

  9. Burke, E.K., Landa Silva, J.D.: The Design of Memetic Algorithms for Scheduling and Timetabling Problems. In: Hart, W.E., Krasnogor, N., Smith, J.E. (eds.) Studies in Fuzziness and Soft Computing: Recent Advances in Memetic Algorithms and Related Search Technologies, vol. 166, pp. 289–312. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A Graph-Based Hyper-Heuristic for Educational Timetabling Problems. European Journal of Operational Research 176, 177–192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burke, E.K., Newall, J.: Enhancing timetable solutions with local search methods. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 195–206. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. European Journal of Operational Research 140, 266–280 (2002)

    Article  MATH  Google Scholar 

  14. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New Algorithms for Examination Timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Carter, M.W., Laporte, G.: Recent Developments in Practical Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies and Applications. Journal of Operational Research Society 47(3), 373–383 (1996)

    Article  Google Scholar 

  17. Chu, S.C., Chen, Y.T., Ho, J.H.: Timetable Scheduling Using Particle Swarm Optimization. In: Proceedings of the 1st International Conference on Innovation computing, Information and Control, vol. 3, pp. 324–327 (2006)

    Google Scholar 

  18. Corr, P.H., McCollum, B., McGreevy, M.A.J., McMullan, P.: A New Neural Network Based Construction Heuristic for the Examination Timetabling Problem. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 392–401. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Costa, D., Hertz, A.: Ant can Colour Graphs. Journal of Operational Research Society 48, 295–305 (1997)

    Article  MATH  Google Scholar 

  20. de Werra, D.: An Introduction to Timetabling. European Journal of Operational Research 19, 151–162 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Dowsland, K., Thompson, J.: Ant Colony Optimisation for the Examination Scheduling Problem. Journal of the Operational Research Society 56, 426–439 (2005)

    Article  MATH  Google Scholar 

  23. Eley, M.: Ant Algorithms for the Exam Timetabling Problem. In: Burke, E.K., Rudová, H. (eds.) PATAT 2007. LNCS, vol. 3867, pp. 364–382. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Kendall, G., Hussin, N.M.: Tabu Search Hyper-Heuristic Approach to the Examination Timetabling Problem at University Technology MARA. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 199–218. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Merlot, L.T.G., Borland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling 12(1), 55–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Socha, K., Sampels, M., Manfrin, M.: Ant Algorithms for the University Course Timetabling Problem with Regard to State-of-the-Art. In: Proceedings of the 3rd European Workshop on Evolutionary Computation in Combinatorial Optimisation, Essex, UK, pp. 334–345 (2003)

    Google Scholar 

  28. Thompson, J., Dowsland, K.: A Robust Simulated Annealing Based Examination Timetabling System. Computers Operations Research 25, 637–648 (1998)

    Article  MATH  Google Scholar 

  29. White, G.M., Xie, B.S.: Examination Timetables and Tabu Search with Longer-Term Memory. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 85–103. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sabar, N.R., Ayob, M., Kendall, G., Qu, R. (2009). Roulette Wheel Graph Colouring for Solving Examination Timetabling Problems. In: Du, DZ., Hu, X., Pardalos, P.M. (eds) Combinatorial Optimization and Applications. COCOA 2009. Lecture Notes in Computer Science, vol 5573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02026-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02026-1_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02025-4

  • Online ISBN: 978-3-642-02026-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics