Fast Algorithm for Graph Isomorphism Testing | SpringerLink
Skip to main content

Fast Algorithm for Graph Isomorphism Testing

  • Conference paper
Experimental Algorithms (SEA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5526))

Included in the following conference series:

Abstract

In this paper we present a novel approach to the graph isomorphism problem. We combine a direct approach, that tries to find a mapping between the two input graphs using backtracking, with a (possibly partial) automorphism precomputing that allows to prune the search tree. We propose an algorithm, conauto, that has a space complexity of O(n 2 logn) bits. It runs in time O(n 5) with high probability if either one of the input graphs is a G(n,p) random graph, for p ∈ [ω(ln 4 n / n ln ln n ), 1 − ω(ln 4 n / n ln ln n )]. We compare the practical performance of conauto with other popular algorithms, with an extensive collection of problem instances. Our algorithm behaves consistently for directed, undirected, positive, and negative cases. Additionally, when it is slower than any of the other algorithms, it is only by a small factor.

Partially supported by grants MICINN TIN2008-06735-C02-01, CAM S-0505/TIC/0285, and MEC PR2008-0015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arvind, V., Kurur, P.P.: Graph isomorphism is in SPP. In: FOCS 2002 (2002)

    Google Scholar 

  2. Babai, L., Kučera, L.: Canonical labeling of graphs in linear average time. In: FOCS 1979 (1979)

    Google Scholar 

  3. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: STOC 1983 (1983)

    Google Scholar 

  4. Boppana, R., Hastad, J., Zachos, S.: Does co-NP have short interactive proofs? Information Processing Letters 25, 27–32 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: An improved algorithm for matching large graphs. In: Proc. of the 3rd IAPR-TC-15 Int’l Workshop on Graph-based Representations (2001)

    Google Scholar 

  6. Czajka, T., Pandurangan, G.: Improved random graph isomorphism. J. of Discrete Algorithms 6(1), 85–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fortin, S.: The graph isomorphism problem. Technical Report TR 96-20, U. of Alberta, Edmonton, Alberta, Canada (July 1996)

    Google Scholar 

  8. Gati, G.: Further annotated bibliography on the isomorphism disease. J. of Graph Theory 3(2), 95–109 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldberg, M.: The graph isomorphism problem. In: Gross, J.L., Yellen, J. (eds.) Handbook of graph theory. Discrete Mathematics and its Applications, ch. 2.2, pp. 68–78. CRC Press, Boca Raton (2003)

    Google Scholar 

  10. Mathon, R.: A note on the graph isomorphism counting problem. Information Processing Letters 8(3), 131–132 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. McKay, B.D.: Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  12. McKay, B.D.: The nauty page. CS Dept., Australian National U. (2004), http://cs.anu.edu.au/~bdm/nauty/

  13. Miyazaki, T.: The complexity of McKay’s canonical labeling algorithm. In: Finkelstein, L., Kantor, W.M. (eds.) Groups and Computation II. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 28 (1997)

    Google Scholar 

  14. López Presa, J.L.: Efficient Algorithms for Graph Isomorphism Testing. Ph.D thesis, ETSI Telecomunicación, U. Rey Juan Carlos, Madrid, Spain (March 2009), http://www.diatel.upm.es/jllopez/tesis/thesis.pdf

  15. Read, R.C., Corneil, D.G.: The graph isomorphism disease. J. of Graph Theory 1, 339–363 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schöning, U.: Graph isomorphism is in the low hierarchy. J. of Computer and System Sciences 37(3), 312–323 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Singler, J.: Graph isomorphism implementation in LEDA 5.1. Technical report, Algorithmic Solutions Software GmbH (December 2005)

    Google Scholar 

  18. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1) (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López-Presa, J.L., Fernández Anta, A. (2009). Fast Algorithm for Graph Isomorphism Testing. In: Vahrenhold, J. (eds) Experimental Algorithms. SEA 2009. Lecture Notes in Computer Science, vol 5526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02011-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02011-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02010-0

  • Online ISBN: 978-3-642-02011-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics