Abstract
In this paper we prove two results related to low-density parity-check (LDPC) codes. The first is to show that the generating function attached to the pseudo-codewords of an LDPC code is a rational function, answering a question raised in [6]. The combinatorial information of its numerator and denominator is also discussed.
The second concerns an infinite family of q-regular bipartite graphs with large girth constructed in [8]. The LDPC codes based on these graphs have attracted much attention. We show that the first few of these graphs are Ramanujan graphs.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arslan, O.: The dimension of LU(3,q) codes (preprint) (2008), http://arxiv.org/abs/0802.0015
Beck, M., Robins, S.: Computing the Continuous Discretely: integer-point enumeration in polyhedra. Springer, New York (2007)
Gallager, R.G.: Low-density parity-check codes. IRE Trans. Inform. Theory 8, 21–28 (1962)
Kim, J.-L., Peled, U.N., Perepelitsa, I., Pless, V., Friedl, S.: Explicit construction of families of LDPC codes with no 4-cycles. IEEE Trans. Inform. Theory 50, 2378–2388 (2004)
Koetter, R., Li, W.-C.W., Vontobel, P.O., Walker, J.L.: Pseudo-codewords of cycle codes via zeta functions. In: Proc. IEEE Inform. Theory Workshop, San Antonio, TX, USA, pp. 7–12 (2004)
Koetter, R., Li, W.-C.W., Vontobel, P.O., Walker, J.L.: Characterizations of pseudo-codewords of (low-density) parity check codes. Adv. in Math. 213, 205–229 (2007)
Koetter, R., Vontobel, P.O.: Graph covers and iterative decoding of finite-length codes. In: Proc. 3rd Intern. Conf. on Turbo Codes and Related Topics, Brest, France, pp. 75–82 (2003)
Lazebnik, F., Ustimenko, V.A.: Explicit construction of graphs with arbitrary large girth and of largh size. Discrete Applied Math. 60, 275–284 (1997)
Loeliger, H.-A.: An introduction to factor graphs. IEEE Sig. Proc. Mag. 21, 28–44 (2004)
Lu, M.: Low-density parity-check codes: asymtotic behavior and zeta functions. Thesis, Penn State University, U.S.A (2009)
Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)
Rosenthal, J., Vontobel, P.O.: Constructions of LDPC codes using Ramanujan graphs and ideas from Margulis. In: Proceedings of the 38th Allerton Conference on Communication, Control, and Computing, pp. 248–257 (2000)
Sin, P., Xiang, Q.: On the dimensions of certain LDPC codes based on q-regular bipartite graphs. IEEE Trans. Inform. Theory 52, 3735–3737 (2006)
Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. in Math. 121, 124–165 (1996)
Wang, C.: Analysis of finite-length low-density parity-check codes. Thesis, Penn State University, U.S.A (in preparation)
Wiberg, N., Loeliger, H.-A., Kotter, R.: Codes and iterative decoding on general graphs. Europ. Trans. on Telecomm. 6, 513–525 (1995)
Wiberg, N.: Codes and Decoding on General Graphs. Thesis, Linköping University, Linköping, Sweden (1996), http://www.it.isy.liu.se/publikationer/LIU-TEK-THESIS-440.pdf
Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, WC.W., Lu, M., Wang, C. (2009). Recent Developments in Low-Density Parity-Check Codes. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds) Coding and Cryptology. IWCC 2009. Lecture Notes in Computer Science, vol 5557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01877-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-01877-0_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01813-8
Online ISBN: 978-3-642-01877-0
eBook Packages: Computer ScienceComputer Science (R0)