Pure Parsimony Xor Haplotyping | SpringerLink
Skip to main content

Pure Parsimony Xor Haplotyping

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2009)

Abstract

The haplotype resolution from xor-genotype data has been recently formulated as a new model for genetic studies [1]. The xor-genotype data is a cheaply obtainable type of data distinguishing heterozygous from homozygous sites without identifying the homozygous alleles. In this paper we propose a formulation based on a well known model used in haplotype inference: pure parsimony. We exhibit exact solutions of the problem by providing polynomial-time algorithms for some restricted cases and a fixed-parameter algorithm for the general case. These results are based on some interesting combinatorial properties of a graph representation of the solutions. Moreover we propose a heuristic and produce an experimental analysis showing that it scales to real-world instances taken from the HapMap project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barzuza, T., Beckmann, J.S., Shamir, R., Pe’er, I.: Computational problems in perfect phylogeny haplotyping: Xor-genotypes and tag SNPs. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 14–31. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Barzuza, T., Beckmann, J.S., Shamir, R., Pe’er, I.: Computational problems in perfect phylogeny haplotyping: Typing without calling the allele. IEEE/ACM Trans. on Comput. Biol. and Bioinform. 5(1), 101–109 (2008)

    Article  Google Scholar 

  3. Bitner, J.R., Ehrlich, G., Reingold, E.M.: Efficient generation of the binary reflected Gray code and its applications. Comm. of the ACM 19(9), 517–521 (1976)

    Article  Google Scholar 

  4. Bixby, R.E., Wagner, D.K.: An almost linear-time algorithm for graph realization. Mathematics of Operations Research 13, 99–123 (1988)

    Article  Google Scholar 

  5. Brown, D.G., Harrower, I.M.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Trans. on Comput. Biol. and Bioinform. 3(2), 141–154 (2006)

    Article  CAS  Google Scholar 

  6. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2005)

    Google Scholar 

  7. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  Google Scholar 

  8. Fredkin, E.: Trie memory. Comm. of the ACM 3(9), 490–499 (1960)

    Article  Google Scholar 

  9. Fujishige, S.: An efficient PQ-graph algorithm for solving the graph realization problem. J. of Computer and System Science 21, 63–86 (1980)

    Article  Google Scholar 

  10. Gusfield, D.: Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In: Proc. 6th RECOMB, pp. 166–175 (2002)

    Google Scholar 

  11. Gusfield, D.: Haplotyping by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Lancia, G., Pinotti, M.C., Rizzi, R.: Haplotyping populations by pure parsimony: Complexity of exact and approximation algorithms. INFORMS J. Comp. 16(4), 348–359 (2004)

    Article  Google Scholar 

  13. Savage, C.: A survey of combinatorial Gray codes. SIAM Rev. 39(4), 605–629 (1997)

    Article  Google Scholar 

  14. The International HapMap Consortium. A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005)

    Google Scholar 

  15. Tutte, W.T.: An algorithm for determining whether a given binary matroid is graphic. Proc. of the American Mathematical Society 11(6), 905–917 (1960)

    Google Scholar 

  16. van Iersel, L., Keijsper, J., Kelk, S., Stougie, L.: Shorelines of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems. IEEE/ACM Trans. on Comput. Biol. and Bioinform. 5(2), 301–312 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y., Rizzi, R. (2009). Pure Parsimony Xor Haplotyping. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics