Use of Ensemble Based on GA for Imbalance Problem | SpringerLink
Skip to main content

Use of Ensemble Based on GA for Imbalance Problem

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

Abstract

In real-world applications, it has been observed that class imbalance (significant differences in class prior probabilities) may produce an important deterioration of the classifier performance, in particular with patterns belonging to the less represented classes. One method to tackle this problem consists to resample the original training set, either by over-sampling the minority class and/or under-sampling the majority class. In this paper, we propose two ensemble models (using a modular neural network and the nearest neighbor rule) trained on datasets under-sampled with genetic algorithms. Experiments with real datasets demonstrate the effectiveness of the methodology here proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for Learning in Class Imbalance Problems. Pattern Recognition 36, 849–851 (2003)

    Article  Google Scholar 

  2. Woods, K., Doss, C., Bowyer, K.W., Solk, J., Priebe, C., Kegelmeyer, W.P.: Comparative Evaluation of Pattern Recognition Techniques for Detection of Microcalcifications in Mammography. International Journal of Pattern Recognition and Artificial Intelligence 7, 1417–1436 (1993)

    Article  Google Scholar 

  3. Fawcett, T., Provost, F.: Adaptive Fraud Detection. Data Mining and Knowledge Discovery 1, 291–316 (1996)

    Article  Google Scholar 

  4. Tan, S.: Neighbor-weighted K-Nearest Neighbour for Unbalanced Text Corpus. Expert Systems with Applications 28, 667–671 (2005)

    Article  Google Scholar 

  5. Huang, Y., Hung, C., Jiau, H.C.: Evaluation of Neural Networks and Data Mining Methods on a Credit Assessment Task for Class Imbalance Problem. Nonlinear Analysis: Real World Applications 7, 720–747 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barandela, R., Valdovinos, R.M., Sánchez, J.S., Ferri, F.J.: The Imbalanced Training Sample Problem: Under or Over Sampling? In: Fred, A., Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR 2004. LNCS, vol. 3138, pp. 806–814. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Ezawa, K.J., Singh, M., Norton, S.W.: Learning Goal Oriented Bayesian Networks for Telecommunication Risk Management. In: Proceedings of the 13th International Conference on Machine Learning, pp. 139–147 (1996)

    Google Scholar 

  8. Ranawana, R., Palade, V.: Optimized Precision – A New Measure for Classifier Performance Evaluation. In: Proceedings IEEE Congress on Evolutionary Computation, pp. 2254–2261 (2004)

    Google Scholar 

  9. Daskalaki, S., Kopanas, I., Avouris, N.: Evaluation of Classifiers for an Uneven Class Distributions Problem. Applied artificial intelligence 20, 381–417 (2006)

    Article  Google Scholar 

  10. Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Learning with class skews and small disjuncts. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS, vol. 3171, pp. 296–306. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Prati, R.C., Batista, G.E.A.P.A., Monard, M.C.: Class Imbalance Versus Class Overlapping: An Analysis of a Learning System Behavior. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS, vol. 2972, pp. 312–321. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Batista, G.E., Pratti, R.C., Monard, M.C.: A Study of the Behavior of Several Methods for Balancing Machine Learning Training Data. SIGKDD Explorations 6, 20–29 (2004)

    Article  Google Scholar 

  13. Chawla, N.V., Bowyer, K.W., Hall, L., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  14. Dietterich, T.G.: Machine Learning Research: Four Current Directions. AI Mag. 68, 97–136 (1997)

    Google Scholar 

  15. Jacobs, R., Jordan, M., Hinton, G.: Adaptive Mixture of Local Experts. Neural Computation 3(1), 79–87 (1991)

    Article  Google Scholar 

  16. Holland, J.: Adaptation in Natural and Artificial System. The University of Michigan Press (1975)

    Google Scholar 

  17. Diaz, R.I., Valdovinos, R.M., Pacheco, J.H.: Comparative Study of Genetic Algorithms and Resampling Methods for Ensemble Constructing. In: Proceedings of IEEE Congress on Evolutionary Computation, Hong Kong, China, pp. 4180–4184 (2008)

    Google Scholar 

  18. Bauckhage, C., Thurau, C.: Towards a Fair’n Square Aimbot - Using Mixture of Experts to Learn Context Aware Weapon Handling. In: Proceedings of GAME-ON, Ghent, Belgium, pp. 20–24 (2004)

    Google Scholar 

  19. Hartono, P., Hashimoto, S.: Ensemble of Linear Perceptrons with Confidence Level Output. In: Proceedings of the 4th Intl. Conf. on Hybrid Intelligent Systems, Kitakyushu, Japan, pp. 186–191 (2004)

    Google Scholar 

  20. Zaman, R., Wunsch III, D.C.: TD Methods Applied to Mixture of Experts for Learning 9x9 Goevaluation Function. In: Proceedings of IEEE/INNS Intl. Joint Conf. on Neural Networks, Washington, DC, pp. 3734–3739 (1999)

    Google Scholar 

  21. Dasarathy, V.: Nearest Neighbor Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  22. Merz, C.J., Murphy, P.M.: UCI Repository of Machine Learning Databases, Dept. of Information and Computer Science, Univ. of California, Irvine, CA (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cleofas, L., Valdovinos, R.M., García, V., Alejo, R. (2009). Use of Ensemble Based on GA for Imbalance Problem. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics