Feedback Control in General Complex Delayed Dynamical Networks | SpringerLink
Skip to main content

Feedback Control in General Complex Delayed Dynamical Networks

  • Conference paper
Advances in Neural Networks – ISNN 2009 (ISNN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5552))

Included in the following conference series:

  • 1358 Accesses

Abstract

Based on feedback control, a problem is discussed in which the state variables of nodes of general complex delayed dynamical networks are controlled to its equilibrium. The delay differential inequality is employed to investigate delay-dependent of this system and some sufficient conditions for asymptotic stability are presented. At the same time, they provide concrete bounds of the delays in terms of explicit expression. A scale-free network is discussed in numerical simulations. They show the effectiveness and feasibility of the proposed conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watts, D.J., Strogatz, S.H.: Collective Dynamics of Small-world. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  2. Barabasi, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wang, X.F., Li, X., Chen, G.R.: Theory and Application of the Complex Networks. Qinghua university press, Beijing (2006)

    Google Scholar 

  5. Wang, X.F., Chen, G.: Pinning Control of Scale-free Dynamical Networks. Physica A 310, 521–531 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, X., Wang, X.F., Chen, G.: Pinning a Complex Dynamical Network to Its Equilibrium. IEEE Trans. Circuits Syst. -I 51(10), 2074–2087 (2004)

    Article  MathSciNet  Google Scholar 

  7. Fan, Z.P., Chen, G.: Pinning Control of Scale-free Complex Networks. In: Proceedings of the IEEE ISCAS 2005 Kobe, Japan, pp. 284–287 (2005)

    Google Scholar 

  8. Chen, G., Fan, Z.P.: Modelling, Control and Synchronization of Complex Networks. In: Proceedings of 2005 Chinese Control and Decision Conference, pp. 22–31 (2005)

    Google Scholar 

  9. Li, X., Wang, X.F.: Feedback Control of Scal-free Coupled Henon maps. In: Proceeding of the Eighth International Conference on control, Automation, Robotics and Vision at Kumming, China, pp. 574–578 (2004)

    Google Scholar 

  10. Albert, R., Jeong, H., Barabśi, A.-L.: Error and Attack Tolerance of Complex Networks. Nature 406, 378–482 (2000)

    Article  Google Scholar 

  11. Albert, R., Barabsi, A.L.: Statistical Mechanics of Complex Networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  12. Wang, X.F.: Complex Networks: Topology, Dynamics and Synchronization. International Journal of Bifurcation & Chaos 12(5), 885–916 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, X., Chen, G.: Synchronization in Scale-free Dynamical Networks: Robustness and Fragility. IEEE Trans.on Circuits and Systems 49(1), 54–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, J., Lu, J.A., Lu, J.H.: Adaptive Synchronization of an Uncertain Complex Dynamical Network. IEEE Transactions on Automatic Control 51(4), 652–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, J.Y., Wong, K.W., Shuai, J.W.: Phase Synchronization in Coupled Chaotic Oscillators with Time Delay. Phys. Rev. E 66, 56–203 (2002)

    Google Scholar 

  16. Lu, W., Chen, T.: Synchronization of Coupled Connected Neural Networks with Delays. IEEE Trans. Circuits Syst. I 51, 2491–2503 (2004)

    Article  MathSciNet  Google Scholar 

  17. Tu, L.L., Lu, J.A.: Stability of a Model for a Delayed Genetic Regulatory Network, Dynamics of Continuous. Discrete and Impulsive Systems 13, 429–439 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tu, L. (2009). Feedback Control in General Complex Delayed Dynamical Networks. In: Yu, W., He, H., Zhang, N. (eds) Advances in Neural Networks – ISNN 2009. ISNN 2009. Lecture Notes in Computer Science, vol 5552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01510-6_114

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01510-6_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01509-0

  • Online ISBN: 978-3-642-01510-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics