A Polynomial-Delay Polynomial-Space Algorithm for Extracting Frequent Diamond Episodes from Event Sequences | SpringerLink
Skip to main content

A Polynomial-Delay Polynomial-Space Algorithm for Extracting Frequent Diamond Episodes from Event Sequences

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

  • 3300 Accesses

Abstract

In this paper, we study the problem of mining frequent diamond episodes efficiently from an input event sequence with sliding a window. Here, a diamond episode is of the form aEb, which means that every event of E follows an event a and is followed by an event b. Then, we design a polynomial-delay and polynomial-space algorithm PolyFreqDmd that finds all of the frequent diamond episodes without duplicates from an event sequence in O(|Σ|2 n) time per an episode and in O(|Σ| + n) space, where Σ and n are an alphabet and the length the event sequence, respectively. Finally, we give experimental results on artificial event sequences with varying several mining parameters to evaluate the efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. 20th VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Arimura, H.: Efficient algorithms for mining frequent and closed patterns from semi-structured data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 2–13. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65, 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Katoh, T., Hirata, K.: Mining frequent elliptic episodes from event sequences. In: Proc. 5th LLLL, pp. 46–52 (2007)

    Google Scholar 

  6. Katoh, T., Hirata, K., Harao, M.: Mining frequent diamond episodes from event sequences. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 477–488. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1, 259–289 (1997)

    Article  Google Scholar 

  8. Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent closed partial orders from strings. IEEE TKDE 18, 1467–1481 (2006)

    Google Scholar 

  9. Pei, J., Han, J., Mortazavi-Asi, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Trans. Knowledge and Data Engineering 16, 1–17 (2004)

    Article  Google Scholar 

  10. Uno, T.: Two general methods to reduce delay and change of enumeration algorithms, NII Technical Report, NII-2003-004E (April 2003)

    Google Scholar 

  11. Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: Proc. 2nd SDM, pp. 457–478. SIAM, Philadelphia (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Katoh, T., Arimura, H., Hirata, K. (2009). A Polynomial-Delay Polynomial-Space Algorithm for Extracting Frequent Diamond Episodes from Event Sequences. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics