Abstract
In this paper, we study the problem of mining frequent diamond episodes efficiently from an input event sequence with sliding a window. Here, a diamond episode is of the form a ↦E ↦b, which means that every event of E follows an event a and is followed by an event b. Then, we design a polynomial-delay and polynomial-space algorithm PolyFreqDmd that finds all of the frequent diamond episodes without duplicates from an event sequence in O(|Σ|2 n) time per an episode and in O(|Σ| + n) space, where Σ and n are an alphabet and the length the event sequence, respectively. Finally, we give experimental results on artificial event sequences with varying several mining parameters to evaluate the efficiency of the algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. 20th VLDB, pp. 487–499 (1994)
Arimura, H.: Efficient algorithms for mining frequent and closed patterns from semi-structured data. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS, vol. 5012, pp. 2–13. Springer, Heidelberg (2008)
Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 724–737. Springer, Heidelberg (2005)
Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Applied Mathematics 65, 21–46 (1996)
Katoh, T., Hirata, K.: Mining frequent elliptic episodes from event sequences. In: Proc. 5th LLLL, pp. 46–52 (2007)
Katoh, T., Hirata, K., Harao, M.: Mining frequent diamond episodes from event sequences. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 477–488. Springer, Heidelberg (2007)
Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1, 259–289 (1997)
Pei, J., Wang, H., Liu, J., Wang, K., Wang, J., Yu, P.S.: Discovering frequent closed partial orders from strings. IEEE TKDE 18, 1467–1481 (2006)
Pei, J., Han, J., Mortazavi-Asi, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu, M.-C.: Mining sequential patterns by pattern-growth: The PrefixSpan approach. IEEE Trans. Knowledge and Data Engineering 16, 1–17 (2004)
Uno, T.: Two general methods to reduce delay and change of enumeration algorithms, NII Technical Report, NII-2003-004E (April 2003)
Zaki, M.J., Hsiao, C.-J.: CHARM: An efficient algorithm for closed itemset mining. In: Proc. 2nd SDM, pp. 457–478. SIAM, Philadelphia (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Katoh, T., Arimura, H., Hirata, K. (2009). A Polynomial-Delay Polynomial-Space Algorithm for Extracting Frequent Diamond Episodes from Event Sequences. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-01307-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01306-5
Online ISBN: 978-3-642-01307-2
eBook Packages: Computer ScienceComputer Science (R0)