Visual Intelligence Density | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 20))

Included in the following conference series:

  • 1200 Accesses

Abstract

Advanced visualization systems have been widely adopted by decision makers for dealing with problems involving spatial, temporal and multidimensional features. While these systems tend to provide reasonable support for particular paradigms, domains, and data types, they are very weak when it comes to supporting multi-paradigm, multi-domain problems that deal with complex spatio-temporal multi-dimensional data. This has led to visualizations that are context insensitive, data dense, and sparse in intelligence. There is a crucial need for visualizations that capture the essence of the relevant information in limited visual spaces allowing decision makers to take better decisions with less effort and time. To address these problems and issues, we propose a visual decision making process that increases the intelligence density of information provided by visualizations. Furthermore, we propose and implement a framework and architecture to support the above process in a flexible manner that is independent of data, domain, and paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization: Using Vision to Think. Morgan Kaufman Publishers, San Francisco (1999)

    Google Scholar 

  2. Hibbard, B.: Top Ten Visualization Problems. ACM SIGGRAPH Computer Graphics 33(2), 21–22 (1999)

    Article  Google Scholar 

  3. Santos, S.D., Brodlie, K.: Gaining Understanding of Multivariate and Multidimensional Data through Visualization. Computers and Graphics 28(3), 311–325 (2004)

    Article  Google Scholar 

  4. Saffer, J.D., Burnett, V.L., Chen, G., van der Spek, P.: Visual Analytics in the Pharmaceutical Industry. IEEE Computer Graphics and Applications 24(5), 10–15 (2004)

    Article  Google Scholar 

  5. Jern, M.: Visual Intelligence – Turning Data into Knowledge. In: Proceedings of IEEE International Conference on Information Visualization, London, pp. 3–8 (1999)

    Google Scholar 

  6. Chen, C.: Top 10 Unsolved Information Visualization Problems. IEEE Computer Graphics and Applications 25(4), 12–16 (2005)

    Article  Google Scholar 

  7. Chi, E.H., Barry, P., Riedl, J., Konstan, J.: A Spreadsheet Approach to Information Visualization. In: Proceedings of IEEE Symposium on Information Visualization, pp. 17–24 (1997)

    Google Scholar 

  8. Keim, D.A., Kriegel, H.P.: Visualization Techniques for Mining Large Databases: a Comparison. IEEE Transactions on Knowledge and Data Engineering 8(6), 923–938 (1996)

    Article  Google Scholar 

  9. Chi, E.H.: A Taxonomy of Visualization Techniques Using the Data State Reference Model. In: Proceedings of IEEE Symposium on Information Visualization, pp. 69–75 (2000)

    Google Scholar 

  10. Chen, C.: Information Visualization: Beyond the Horizon, 2nd edn., pp. 89–142. Springer, London (2004)

    Google Scholar 

  11. Turetken, O., Sharda, R.: Visualization of Web Spaces: State of the Art and Future Directions. SIGMIS Database 38(3), 51–81 (2007)

    Article  Google Scholar 

  12. Hearst, M.A.: TileBars: Visualization of Term Distribution Information in Full Text Information Access. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 59–66. ACM Press/Addison-Wesley Publishing Co. (1995)

    Google Scholar 

  13. Chi, E.H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler, R., Card, S.K.: Visualizing the Evolution of Web Ecologies. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 400–407. ACM Press/Addison-Wesley Publishing Co., New York (1998)

    Google Scholar 

  14. Konstantinides, K., Rasure, J.R.: The Khoros Software Development Environment for Image and Signal Processing. IEEE Transactions on Image Processing 3(3), 243–252 (1994)

    Article  Google Scholar 

  15. Dhar, V., Stein, R.: Intelligent Decision Support Methods: the Science of Knowledge Work. Prentice Hall, Upper Saddle River (1997)

    Google Scholar 

  16. He, G.G., Kovalerchuk, B., Mroz, T.: Multilevel Analytical and Visual Decision Framework for Imagery Conflation and Registration. In: Kovalerchuk, B., Schwing, J. (eds.) Visual and Spatial Analysis: Advances in Data Mining Reasoning, and Problem Solving, pp. 435–472. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Simon, H.A.: The New Science of Management Decision. Harper & Row, New York (1960)

    Book  Google Scholar 

  18. Chermack, T.J.: Studying Scenario Planning: Theory, Research Suggestions and Hypotheses. Technological Forecasting and Social Change 72(1), 59–73 (2005)

    Article  Google Scholar 

  19. Keough, S.M., Shanahan, K.J.: Scenario Planning: Toward a More Complete Model for Practice. Advances in Developing Human Resources 10(2), 166–178 (2008)

    Article  Google Scholar 

  20. Schoemaker, P.: When and How to Use Scenario Planning: a Heuristic Approach with Illustration. Journal of Forecasting 10(6), 549–564 (1991)

    Article  Google Scholar 

  21. Chermack, T.: Improving Decision-making with Scenario Planning. Futures 36(3), 295–309 (2004)

    Article  Google Scholar 

  22. Heer, J., Agrawala, M.: Software Design Patterns for Information Visualization. IEEE Transactions on Visualization and Computer Graphics 12(5), 853–860 (2006)

    Article  Google Scholar 

  23. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bai, X., White, D., Sundaram, D. (2009). Visual Intelligence Density. In: Yang, J., Ginige, A., Mayr, H.C., Kutsche, RD. (eds) Information Systems: Modeling, Development, and Integration. UNISCON 2009. Lecture Notes in Business Information Processing, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01112-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01112-2_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01111-5

  • Online ISBN: 978-3-642-01112-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics