Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning | SpringerLink
Skip to main content

Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning

  • Chapter
Foundations of Computational Intelligence Volume 3

Part of the book series: Studies in Computational Intelligence ((SCI,volume 203))

Abstract

Particle Swarm Optimization (PSO) algorithm is a stochastic search technique, which has exhibited good performance across a wide range of applications. However, very often for multi-modal problems involving high dimensions the algorithm tends to suffer from premature convergence. Premature convergence could make the PSO algorithm very difficult to arrive at the global optimum or even a local optimum. Analysis of the behavior of the particle swarm model reveals that such premature convergence is mainly due to the decrease of velocity of particles in the search space that leads to a total implosion and ultimately fitness stagnation of the swarm. This paper introduces Turbulence in the Particle Swarm Optimization (TPSO) algorithm to overcome the problem of stagnation. The algorithm uses a minimum velocity threshold to control the velocity of particles. TPSO mechanism is similar to a turbulence pump, which supplies some power to the swarm system to explore new neighborhoods for better solutions. The algorithm also avoids clustering of particles and at the same time attempts to maintain diversity of population. We attempt to theoretically analyze that the algorithm converges with a probability of 1 towards the global optimal. The parameter, the minimum velocity threshold of the particles is tuned adaptively by a fuzzy logic controller embedded in the TPSO algorithm, which is further called as Fuzzy Adaptive TPSO (FATPSO). We evaluated the performance of FATPSO and compared it with the Standard PSO (SPSO), Genetic Algorithm (GA) and Simulated Annealing (SA). The comparison was performed on a suite of 20 widely used benchmark problems. Empirical results illustrate that the FATPSO could prevent premature convergence very effectively. It clearly outperforms the considered methods, especially for high dimension multi-modal optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boeringer, D.W., Werner, D.H.: Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation 52(3), 771–779 (2004)

    Article  Google Scholar 

  2. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  4. Cordón, O., Herrera, F., Peregrin, A.: Applicability of the fuzzy operators in the design of fuzzy logic controllers. Fuzzy Sets and Systems 86, 15–41 (1997)

    Article  MATH  Google Scholar 

  5. Du, F., Shi, W.K., Chen, L.Z., Deng, Y., Zhu, Z.F.: Infrared image segmentation with 2-D maximum entropy method based on particle swarm optimization. Pattern Recognition Letters 26, 597–603 (2005)

    Article  Google Scholar 

  6. Eberhart, R.C., Shi, Y.H.: Comparison between genetic algorithms and particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 611–616 (1998)

    Google Scholar 

  7. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transations on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  8. Feller, W.: An Introduction to Probability Theory and Its Application, 3rd edn. John Wiley & Sons, Chichester (1968)

    Google Scholar 

  9. Guo, C., Tang, H.: Global convergence properties of evolution stragtegies. Mathematica Numerica Sinica 23(1), 105–110 (2001)

    MathSciNet  Google Scholar 

  10. He, R., Wang, Y., Wang, Q., Zhou, J., Hu, C.: An improved particle swarm optimization based on self-adaptive escape velocity. Journal of Software 16(12), 2036–2044 (2005)

    Article  MATH  Google Scholar 

  11. Herrera, F., Lozano, M.: Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions. Soft Computing 7, 545–562 (2003)

    Google Scholar 

  12. Jiang, C.W., Etorre, B.: A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation. Mathematics and Computers in Simulation 68, 57–65 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kennedy, J., Spears, W. M.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 78–83 (1998)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann Publishers, Inc., San Francisco (2001)

    Google Scholar 

  15. Lu, W.Z., Fan, H.Y., Lo, S.M.: Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong. Neurocomputing 51, 387–400 (2003)

    Article  Google Scholar 

  16. Mahfouf, M., Chen, M.Y., Linkens, D.A.: Adaptive weighted swarm optimization for multiobjective optimal design of alloy steels. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 762–771. Springer, Heidelberg (2004)

    Google Scholar 

  17. Mark, L., Shay, E.: A fuzzy-based lifetime extension of genetic algorithms. Fuzzy Sets and Systems 149, 131–147 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Orosz, J.E., Jacobson, S.H.: Analysis of static simulated annealing algorithms. Journal of Optimzation theory and Applications 115(1), 165–182 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1, 235–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Parsopoulos, K.E., Vrahatis, M.N.: On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3), 211–224 (2004)

    Article  MathSciNet  Google Scholar 

  21. Phan, H.V., Lech, M., Nguyen, T.D.: Registration of 3D range images using particle swarm optimization. In: Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 223–235. Springer, Heidelberg (2004)

    Google Scholar 

  22. Schute, J.F., Groenwold, A.A.: A study of global optimization using particle swarms. Journal of Global Optimization 31, 93–108 (2005)

    Article  Google Scholar 

  23. Shi, Y.H., Eberhart, R.C., Chen, Y.: Implementation of evolutionary fuzzy systems. IEEE Transactions on Fuzzy System 7(2), 109–119 (1999)

    Article  Google Scholar 

  24. Shi, Y.H., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 101–106 (2001)

    Google Scholar 

  25. Sousa, T., Silva, A., Neves, A.: Particle swarm based data mining algorithms for classification tasks. Parallel Computing 30, 767–783 (2004)

    Article  Google Scholar 

  26. Ting, T., Rao, M., Loo, C.K., Ngu, S.S.: Solving unit commitment problem using hybrid particle swarm optimization. Journal of Heuristics 9, 507–520 (2003)

    Article  MATH  Google Scholar 

  27. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Triki, E., Collette, Y., Siarry, P.: A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. European Journal of Operational Research 166, 77–92 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. van den Bergh, F.: An analysis of particle swarm optimizers, PhD thesis, University of Pretoria, South Africa (2002)

    Google Scholar 

  30. Yun, Y.S., Gen, M.: Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics. Fuzzy Optimization and Decision Making 2, 161–175 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abraham, A., Liu, H. (2009). Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning. In: Abraham, A., Hassanien, AE., Siarry, P., Engelbrecht, A. (eds) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01085-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01085-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01084-2

  • Online ISBN: 978-3-642-01085-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics