Abstract
In this paper, we study how to automatically exploit visual concepts in a text-based image retrieval task. First, we use Forest of Fuzzy Decision Trees (FFDTs) to automatically annotate images with visual concepts. Second, using optionally WordNet, we match visual concepts and textual query. Finally, we filter the text-based image retrieval result list using the FFDTs. This study is performed in the context of two tasks of the CLEF2008 international campaign: the Visual Concept Detection Task (VCDT) (17 visual concepts) and the photographic retrieval task (ImageCLEFphoto) (39 queries and 20k images). Our best VCDT run is the 4th best of the 53 submitted runs. The ImageCLEFphoto results show that there is a clear improvement, in terms of precision at 20, when using the visual concepts explicitly appearing in the query.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arni, T., Clough, P., Sanderson, M., Grubinger, M.: Overview of the ImageCLEFphoto 2008 photographic retrieval task. In: Evaluating Systems for Multilingual and Multimodal Information Access – 9th Workshop of the Cross-Language Evaluation Forum. LNCS. Springer, Heidelberg (2009)
Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.I.: Matching words and pictures. Machine Learning Research 3, 1107–1135 (2003)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys 40(2) (2008)
Deselaers, T., Deserno, T.M.: The visual concept detection task in ImageCLEF 2008. In: Evaluating Systems for Multilingual and Multimodal Information Access – 9th Workshop of the Cross-Language Evaluation Forum. LNCS. Springer, Heidelberg (2009)
Fellbaum, C.: WordNet - An Electronic Lexical Database. Bradford books (1998)
Marsala, C., Bouchon-Meunier, B.: Forest of fuzzy decision trees. In: International Fuzzy Systems Association World Congress, vol. 1, pp. 369–374 (1997)
Marsala, C., Detyniecki, M.: Trecvid 2006: Forests of fuzzy decision trees for high-level feature extraction. In: TREC Video Retrieval Evaluation Online Proceedings (2006)
Tollari, S., Glotin, H.: Web image retrieval on ImagEVAL: Evidences on visualness and textualness concept dependency in fusion model. In: ACM CIVR (2007)
Yavlinsky, A., Heesch, D., Rüger, S.M.: A large scale system for searching and browsing images from the world wide web. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 537–540. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tollari, S., Detyniecki, M., Marsala, C., Fakeri-Tabrizi, A., Amini, MR., Gallinari, P. (2009). Exploiting Visual Concepts to Improve Text-Based Image Retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds) Advances in Information Retrieval. ECIR 2009. Lecture Notes in Computer Science, vol 5478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00958-7_70
Download citation
DOI: https://doi.org/10.1007/978-3-642-00958-7_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00957-0
Online ISBN: 978-3-642-00958-7
eBook Packages: Computer ScienceComputer Science (R0)