Intensive Use of Correspondence Analysis for Large Scale Content-Based Image Retrieval | SpringerLink
Skip to main content

Intensive Use of Correspondence Analysis for Large Scale Content-Based Image Retrieval

  • Chapter
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 292))

Abstract

In this paper, we investigate the intensive use of Correspondence Analysis (CA) for large scale content-based image retrieval. Correspondence Analysis is a useful method for analyzing textual data and we adapt it to images using the SIFT local descriptors. CA is used to reduce dimensions and to limit the number of images to be considered during the search step. An incremental algorithm for CA is proposed to deal with large databases giving exactly the same result as the standard algorithm. We also integrate the Contextual Dissimilarity Measure in our search scheme in order to improve response time and accuracy. We explore this integration in two ways: (i) off-line (the structure of image neighborhoods is corrected off-line) and (ii) on-the-fly (the structure of image neighborhoods is adapted during the search). The evaluation tests have been performed on a large image database (up to 1 million images).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Amsaleg, L., Gros, P.: Content-based Retrieval Using Local Descriptors: Problems and Issues from a Database Perspective. Pattern Analysis and Applications, Special Issue on Image Indexation 4(2-3), 108–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) ISBN 0-89871-447-8 (paperback)

    Google Scholar 

  • Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)

    Article  Google Scholar 

  • Benzecri, J.P.: L’Analyse de données: L’Analyse des correspondances. Dunod, Paris (1973)

    Google Scholar 

  • Berrani, S.A., Amsaleg, L., Gros, P.: Robust content-based image searches for copyright protection. In: Proceedings of the ACM International Workshop on Multimedia Databases (MMDB 2003), pp. 70–77. ACM, New York (2003)

    Chapter  Google Scholar 

  • Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    Article  MATH  Google Scholar 

  • Bosch, A., Zisserman, A., Munoz, X.: Scene Classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harsman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)

    Article  Google Scholar 

  • Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)

    Article  Google Scholar 

  • Greenacre, M.J.: Theory and Application of correspondence analysis. Academic Press, London (1984)

    Google Scholar 

  • Greenacre, M.J.: Correspondence analysis in practice, 2nd edn. Chapman and Hall, Boca Raton (2007)

    MATH  Google Scholar 

  • Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)

    Google Scholar 

  • Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)

    Google Scholar 

  • Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: Proceedings of CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  • Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 511–517 (2004)

    Google Scholar 

  • Lebart, L.: Multivariate Descriptive Statistical Analysis (Probability & Mathematical Statistics). John Wiley & Sons Inc., Chichester (1984)

    Google Scholar 

  • Lienhart, R., Slaney, M.: pLSA on large scale image databases. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1217–1220 (2007)

    Google Scholar 

  • Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)

    Article  Google Scholar 

  • Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece, pp. 1150–1157 (1999)

    Google Scholar 

  • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004a)

    Article  Google Scholar 

  • Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110 (2004b)

    Google Scholar 

  • Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2001), vol. 1, pp. 525–531 (2001)

    Google Scholar 

  • Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  • Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Proceedings of IJC V 60(1), 63–86 (2004a)

    Google Scholar 

  • Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004b)

    Article  Google Scholar 

  • Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  • Mohr, R., Gros, P., Schmid, C.: Efficient matching with invariant local descriptors. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 54–71. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  • Morin, A.: Intensive Use of Correspondence Analysis for Information Retrieval. In: Proceedings of the 26th International Conference on Information Technology Interfaces, ITI 2004, pp. 255–258 (2004)

    Google Scholar 

  • Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2161–2168 (2006)

    Google Scholar 

  • Pham, N.-K., Morin, A.: Une nouvelle approche pour la recherche d’images par le contenu. In: Revue des Nouvelles Technologies de l’Information - Serie Extraction et gestion des connaissances, vol. RNTI-E-11, pp. 475–486 (2008)

    Google Scholar 

  • Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)

    Article  Google Scholar 

  • Schaffalitzky, F., Zisserman, A.: Automated Location Matching in Movies. Computer Vision and Image Understanding 92, 236–264 (2003)

    Article  Google Scholar 

  • Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)

    Article  Google Scholar 

  • Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in image collections. In: Proceedings of the International Conference on Computer Vision, pp. 370–377 (2005)

    Google Scholar 

  • Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  • Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  • Tuytelaars, T., Gool, L.J.V.: Content-Based Image Retrieval Based on Local Affinely Invariant Regions. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 493–500. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  • Willamowski, J., Arregui, D., Csurka, G., Dance, C.R., Fan, L.: Categorizing Nine Visual Classes Using Local Appearance Descriptors. In: Proceeding of the ICPR Workshop on Learning for Adaptable Visual Systems (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pham, NK., Morin, A., Gros, P., Le, QT. (2010). Intensive Use of Correspondence Analysis for Large Scale Content-Based Image Retrieval. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00580-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00580-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00579-4

  • Online ISBN: 978-3-642-00580-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics