Abstract
In this paper, we investigate the intensive use of Correspondence Analysis (CA) for large scale content-based image retrieval. Correspondence Analysis is a useful method for analyzing textual data and we adapt it to images using the SIFT local descriptors. CA is used to reduce dimensions and to limit the number of images to be considered during the search step. An incremental algorithm for CA is proposed to deal with large databases giving exactly the same result as the standard algorithm. We also integrate the Contextual Dissimilarity Measure in our search scheme in order to improve response time and accuracy. We explore this integration in two ways: (i) off-line (the structure of image neighborhoods is corrected off-line) and (ii) on-the-fly (the structure of image neighborhoods is adapted during the search). The evaluation tests have been performed on a large image database (up to 1 million images).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amsaleg, L., Gros, P.: Content-based Retrieval Using Local Descriptors: Problems and Issues from a Database Perspective. Pattern Analysis and Applications, Special Issue on Image Indexation 4(2-3), 108–124 (2001)
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999) ISBN 0-89871-447-8 (paperback)
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4), 509–522 (2002)
Benzecri, J.P.: L’Analyse de données: L’Analyse des correspondances. Dunod, Paris (1973)
Berrani, S.A., Amsaleg, L., Gros, P.: Robust content-based image searches for copyright protection. In: Proceedings of the ACM International Workshop on Multimedia Databases (MMDB 2003), pp. 70–77. ACM, New York (2003)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)
Bosch, A., Zisserman, A., Munoz, X.: Scene Classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)
Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harsman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41(6), 391–407 (1990)
Freeman, W., Adelson, E.: The Design and Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(9), 891–906 (1991)
Greenacre, M.J.: Theory and Application of correspondence analysis. Academic Press, London (1984)
Greenacre, M.J.: Correspondence analysis in practice, 2nd edn. Chapman and Hall, Boca Raton (2007)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, pp. 147–151 (1988)
Hofmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI 1999), pp. 289–296 (1999)
Jegou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: Proceedings of CVPR 2007, pp. 1–8 (2007)
Ke, Y., Sukthankar, R.: PCA-SIFT: A More Distinctive Representation for Local Image Descriptors. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 511–517 (2004)
Lebart, L.: Multivariate Descriptive Statistical Analysis (Probability & Mathematical Statistics). John Wiley & Sons Inc., Chichester (1984)
Lienhart, R., Slaney, M.: pLSA on large scale image databases. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1217–1220 (2007)
Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)
Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th International Conference on Computer Vision, Kerkyra, Greece, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004a)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 91–110 (2004b)
Mikolajczyk, K., Schmid, C.: Indexing based on scale invariant interest points. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV 2001), vol. 1, pp. 525–531 (2001)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Proceedings of IJC V 60(1), 63–86 (2004a)
Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004b)
Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Mohr, R., Gros, P., Schmid, C.: Efficient matching with invariant local descriptors. In: Amin, A., Pudil, P., Dori, D. (eds.) SPR 1998 and SSPR 1998. LNCS, vol. 1451, pp. 54–71. Springer, Heidelberg (1998)
Morin, A.: Intensive Use of Correspondence Analysis for Information Retrieval. In: Proceedings of the 26th International Conference on Information Technology Interfaces, ITI 2004, pp. 255–258 (2004)
Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2161–2168 (2006)
Pham, N.-K., Morin, A.: Une nouvelle approche pour la recherche d’images par le contenu. In: Revue des Nouvelles Technologies de l’Information - Serie Extraction et gestion des connaissances, vol. RNTI-E-11, pp. 475–486 (2008)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing & Management 24(5), 513–523 (1988)
Schaffalitzky, F., Zisserman, A.: Automated Location Matching in Movies. Computer Vision and Image Understanding 92, 236–264 (2003)
Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(5), 530–535 (1997)
Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., Freeman, W.T.: Discovering objects and their location in image collections. In: Proceedings of the International Conference on Computer Vision, pp. 370–377 (2005)
Sivic, J., Zisserman, A.: Video Google: A Text Retrieval Approach to Object Matching in Videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1470–1477 (2003)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-Based Image Retrieval at the End of the Early Years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Tuytelaars, T., Gool, L.J.V.: Content-Based Image Retrieval Based on Local Affinely Invariant Regions. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 493–500. Springer, Heidelberg (1999)
Willamowski, J., Arregui, D., Csurka, G., Dance, C.R., Fan, L.: Categorizing Nine Visual Classes Using Local Appearance Descriptors. In: Proceeding of the ICPR Workshop on Learning for Adaptable Visual Systems (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pham, NK., Morin, A., Gros, P., Le, QT. (2010). Intensive Use of Correspondence Analysis for Large Scale Content-Based Image Retrieval. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00580-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-00580-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00579-4
Online ISBN: 978-3-642-00580-0
eBook Packages: EngineeringEngineering (R0)