A Dynamic Model for On-Line Social Networks | SpringerLink
Skip to main content

A Dynamic Model for On-Line Social Networks

  • Conference paper
Algorithms and Models for the Web-Graph (WAW 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5427))

Included in the following conference series:

Abstract

We present a deterministic model for on-line social networks based on transitivity and local knowledge in social interactions. In the Iterated Local Transitivity (ILT) model, at each time-step and for every existing node x, a new node appears which joins to the closed neighbour set of x. The ILT model provably satisfies a number of both local and global properties that were observed in real-world on-line social and other complex networks, such as a densification power law, decreasing average distance, and higher clustering than in random graphs with the same average degree. Experimental studies of social networks demonstrate poor expansion properties as a consequence of the existence of communities with low number of inter-community links. A spectral gap for both the adjacency and normalized Laplacian matrices is proved for graphs arising from the ILT model, thereby simulating such bad expansion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adamic, L.A., Buyukkokten, O., Adar, E.: A social network caught in the web. First Monday 8 (2003)

    Google Scholar 

  2. Ahn, Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of topological characteristics of huge on-line social networking services. In: Proceedings of the 16th International Conference on World Wide Web (2007)

    Google Scholar 

  3. Bebek, G., Berenbrink, P., Cooper, C., Friedetzky, T., Nadeau, J., Sahinalp, S.C.: The degree distribution of the generalized duplication model. Theoretical Computer Science 369, 234–249 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhan, A., Galas, D.J., Dewey, T.G.: A duplication growth model of gene expression networks. Bioinformatics 18, 1486–1493 (2002)

    Article  Google Scholar 

  5. Bonato, A.: A Course on the Web Graph. American Mathematical Society Graduate Studies Series in Mathematics, Providence, Rhode Island (2008)

    Google Scholar 

  6. Bonato, A., Janssen, J.: Infinite limits and adjacency properties of a generalized copying model. Internet Mathematics (accepted)

    Google Scholar 

  7. Caldarelli, G.: Scale-Free Networks. Oxford University Press, Oxford (2007)

    Book  MATH  Google Scholar 

  8. Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence, Rhode Island (1997)

    MATH  Google Scholar 

  9. Chung, F., Lu, L., Dewey, T., Galas, D.: Duplication models for biological networks. Journal of Computational Biology 10, 677–687 (2003)

    Article  Google Scholar 

  10. Chung, F., Lu, L.: Complex graphs and networks. American Mathematical Society, Providence, Rhode Island (2006)

    Book  MATH  Google Scholar 

  11. Chung, F., Lu, L., Vu, V.: The spectra of random graph with given expected degrees. Internet Mathematics 1, 257–275 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in on-line communities. In: Proceedings of the 14th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining (2008)

    Google Scholar 

  13. Durrett, R.: Random Graph Dynamics. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  14. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8, 24–27 (2003)

    Article  MathSciNet  Google Scholar 

  15. Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhys. Lett. 73, 649–655 (2006)

    Article  MathSciNet  Google Scholar 

  16. Frank, O.: Transitivity in stochastic graphs and digraphs. Journal of Mathematical Sociology 7, 199–213 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gkantsidis, C., Mihail, M., Saberi, A.: Throughput and congestion in power-law graphs. In: Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement Modeling of Computer Systems (2003)

    Google Scholar 

  19. Golder, S., Wilkinson, D., Huberman, B.: Rhythms of social interaction: messaging within a massive on-line network. In: 3rd International Conference on Communities and Technologies (2007)

    Google Scholar 

  20. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41th IEEE Symposium on Foundations of Computer Science (2000)

    Google Scholar 

  21. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of on-line social networks. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2006)

    Google Scholar 

  22. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification Laws, shrinking diameters and possible explanations. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2005)

    Google Scholar 

  23. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C.: Realistic, mathematically tractable graph generation and evolution, using kronecker multiplication. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS, vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., Tomkins, A.: Geographic routing in social networks. Proceedings of the National Academy of Sciences 102, 11623–11628 (2005)

    Article  Google Scholar 

  25. Milgram, S.: The small world problem. Psychology Today 2, 60–67 (1967)

    Google Scholar 

  26. Mislove, A., Marcon, M., Gummadi, K., Druschel, P., Bhattacharjee, B.: Measurement and analysis of on-line social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement (2007)

    Google Scholar 

  27. Pastor-Satorras, R., Smith, E., Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003)

    Article  MathSciNet  Google Scholar 

  28. Scott, J.P.: Social Network Analysis: A Handbook. Sage Publications Ltd., London (2000)

    Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  30. White, H., Harrison, S., Breiger, R.: Social structure from multiple networks, I: Blockmodels of roles and positions. American Journal of Sociology 81, 730–780 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonato, A., Hadi, N., Horn, P., Prałat, P., Wang, C. (2009). A Dynamic Model for On-Line Social Networks. In: Avrachenkov, K., Donato, D., Litvak, N. (eds) Algorithms and Models for the Web-Graph. WAW 2009. Lecture Notes in Computer Science, vol 5427. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95995-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95995-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95994-6

  • Online ISBN: 978-3-540-95995-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics