Type-2 Fuzzy Logic and the Modelling of Uncertainty in Applications | SpringerLink
Skip to main content

Type-2 Fuzzy Logic and the Modelling of Uncertainty in Applications

  • Chapter
Human-Centric Information Processing Through Granular Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

Most real world applications contain high levels of uncertainty and imprecision. Sources of the imprecision include sensor noise; variation in actuator performance; linguistic variation between people; temporal modification of expert opinion; and disagreement between experts. Type-2 fuzzy logic is now accepted as a mature technology for coping with this wide variety of sources of uncertainty. This Chapter provides an overview of type-2 fuzzy logic systems providing the reader with an insight into how the various algorithms provide different approaches to modelling uncertainty. We place in context these issues by discussing a number of real world applications that have successfully deployed type-2 fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coupland, S., John, R.: An Approach to Type-2 Fuzzy Arithmetic. In: Proc. UK Workshop on Computational Intelligence, pp. 107–114 (2004)

    Google Scholar 

  2. Coupland, S., John, R.: Fuzzy Logic and Computational Geometry. In: Proc. RASC 2004, Nottingham, England, December 2004, pp. 3–8 (2004)

    Google Scholar 

  3. Coupland, S., John, R.: Towards More Efficient Type-2 Fuzzy Logic Systems. In: Proc. FUZZ-IEEE 2005, Reno, NV, USA, May 2005, pp. 236–241 (2005)

    Google Scholar 

  4. Coupland, S., John, R.: New Geometric Inference Techniques for Type-2 Fuzzy Sets. International Journal of Approximate Reasoning 49(1), 198–211 (2008)

    Article  MathSciNet  Google Scholar 

  5. Coupland, S., Wheeler, J., Gongora, M.: A generalised type-2 fuzzy logic system embedded board and integrated development environment. In: Proc. FUZZ-IEEE 2008 (in WCCI 2008), Hong Kong (accepted for publication, 2008)

    Google Scholar 

  6. Coupland, S., John, R.: Geometric logical operations for type-2 fuzzy sets. In: Proc. IPMU 2008, Malaga (submitted, December 2007)

    Google Scholar 

  7. Di Lascio, L., Gisolfi, A., Nappi, A.: Medical differential diagnosis through Type-2 Fuzzy Sets. In: Proc. FUZZ-IEEE 2005, Reno, NV, USA, May 2005, pp. 371–376 (2005)

    Google Scholar 

  8. Doctor, F., Hagras, H., Callaghan, V.: A Type-2 Fuzzy Embedded Agent For Ubiquitous Computing Environments. In: Proc. FUZZ-IEEE 2004, Budapest, Hungary, July 2004, pp. 1105–1110 (2004)

    Google Scholar 

  9. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Figueroa, J., Posada, J., Soriano, J., Melgarejo, M., Rojas, S.: A Type-2 Fuzzy Controller for Tracking Mobile Objects in the Context of Robotic Soccer Games. In: Proc. FUZZ-IEEE 2005, Reno, AZ, USA, May 2005, pp. 359–364 (2005)

    Google Scholar 

  11. Garibaldi, J.M., Westgate, J.A., Ifeachor, E.C., Greene, K.R.: The Development and Implementation of an Expert System for the Analysis of Umbilical Cord Blood. Artificial Intelligence in Medicine 10(2), 129–144 (1997)

    Article  Google Scholar 

  12. Greenfield, S., John, R., Coupland, S.: A Novel Sampling Method for Type-2 Defuzzification. In: Proc. UKCI 2005, pp. 120–127 (2005)

    Google Scholar 

  13. Hagras, H.: A Hierarchical Type-2 Fuzzy Logic Control Architecture for Autonomous Mobile Robots. IEEE Transactions on Fuzzy Systems 12, 524–539 (2004)

    Article  Google Scholar 

  14. Innocent, P., John, R.I.: Computer Aided Fuzzy Medical Diagnosis. Information Sciences 162, 81–104 (2004)

    Article  Google Scholar 

  15. John, R., Coupland, S.: Type-2 Fuzzy Logic: A Historical View. IEEE Computational Intelligence Magazine 2(1), 57–62 (2007)

    Article  Google Scholar 

  16. John, R., Lake, S.: Modelling nursing perceptions using type-2 fuzzy sets. In: EUROFUSE 2001 Workshop on Preference Modelling and Applications, pp. 241–246 (2001)

    Google Scholar 

  17. John, R.I.: Type-2 Fuzzy Sets. Expert Update, 2(2) (1999) ISSN 1465-4091

    Google Scholar 

  18. John, R.I., Innocent, P.R., Barnes, M.R.: Neuro-fuzzy clustering of radiographic tibia image data using type-2 fuzzy sets. Information Sciences 125, 203–220 (2000)

    Article  Google Scholar 

  19. John, R.I.: Type-2 inferencing and community transport scheduling. In: Proc. Fourth European Congress on Intelligent Techniques and Soft Computing, EUFIT 1996, Aachen, Germany, September 1996, p. 1369 (1996)

    Google Scholar 

  20. John, R.I.: Type–2 Fuzzy Sets for Knowledge Representation and Inferencing. In: Proc. 7th Intl. Conf. on Fuzzy Systems FUZZ-IEEE 1998, pp. 1003–1008 (1998)

    Google Scholar 

  21. John, R.I.: Type 2 Fuzzy Sets: An Appraisal of Theory and Applications. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 6(6), 563–576 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. John, R.I.: Fuzzy sets of type-2. Journal of Advanced Computational Intelligence 3(6), 499–508 (1999)

    Google Scholar 

  23. John, R.I., Innocent, P.R., Barnes, M.R.: Type–2 Fuzzy Sets and Neuro-Fuzzy Clustering of Radiographic Tibia Images. In: Proc. FUZZ-IEEE 1998, pp. 1373–1376 (1998)

    Google Scholar 

  24. John, R.I., Lake, S.: Type-2 fuzzy sets for modelling nursing intuition. In: Proc. Joint 9th IFSA World Congress and 20th NAFIPS International Conference, July 2001, pp. 1920–1925 (2001)

    Google Scholar 

  25. Karnik, N.N., Mendel, J.M.: Introduction to Type-2 Fuzzy Logic Systems. In: Proc. IEEE World Congress on Computational Intelligence, Anchorage, Alaska, USA, pp. 915–920 (1998)

    Google Scholar 

  26. Karnik, N.N., Mendel, J.M.: Type-2 Fuzzy Logic Systems: Type-Reduction. In: Proc. IEEE Systems, Man and Cybernetics, pp. 2046–2051 (1998)

    Google Scholar 

  27. Karnik, N.N., Mendel, J.M.: Application of Type-2 Fuzzy Logic System to Forecasting of Time-Series. Information Sciences 120, 89–111 (1999)

    Article  MATH  Google Scholar 

  28. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy Set. Information Sciences 132, 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  30. Liang, Q., Mendel, J.M.: Equalization of Nonlinear Time-Varying Channels Using Type-2 Fuzzy Adaptive Filters. IEEE Transactions on Fuzzy Systems 8, 551–563 (2000)

    Article  Google Scholar 

  31. Lynch, C., Hagras, H., Callaghan, V.: Embedded Type-2 FLC for Real-Time Speed Control of Marine and Traction Diesel Engines. In: Proc. FUZZ-IEEE 2005, Reno, AZ, USA, May 2005, pp. 347–352 (2005)

    Google Scholar 

  32. Lynch, C., Hagras, H., Callaghan, V.: Parallel type-2 fuzzy logic co-processors for engine management. In: Proc. FUZZ-IEEE 2007, London, pp. 907–912 (2007)

    Google Scholar 

  33. Melgarejo, M., Pena-Reyes, C.: Hardware Architecture and FPGA Implementation of a Type-2 Fuzzy System. In: Proc. GLSVSLI 2004, Boston, Massachusetts, USA, April 2004, pp. 458–461 (2004)

    Google Scholar 

  34. Melin, P., Castillo, O.: Fuzzy Logic for Plant Monitoring and Diagnostics. In: Proc. NAFIPS 2003, July 2003, pp. 20–25 (2003)

    Google Scholar 

  35. Melin, P., Castillo, O.: Intelligent Control of Non-Linear Dynamic Plants Using Type-2 Fuzzy Logic and Neural Networks. In: Proc. FUZZ-IEEE 2004, Budapest, Hungary (July 2004)

    Google Scholar 

  36. Mendel, J.M.: Computing With Words, When Words Mean Different Things to Different People. In: Proc. of Third International ICSC Symposium on Fuzzy Logic and Applications, Rochester Univ., Rochester (1999)

    Google Scholar 

  37. Mendel, J.M.: The Perceptual Computer: an Architecture for Computing With Words. In: Proc. FUZZ-IEEE 2001, Melbourne, Australia (2001)

    Google Scholar 

  38. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)

    MATH  Google Scholar 

  39. Mendel, J.M.: Fuzzy sets for words: a new beginning. In: Proc. FUZZ-IEEE 2003, St. Louis, MO, USA, pp. 37–42 (2003)

    Google Scholar 

  40. Mendel, J.M., John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transaction on Fuzzy Systems 10(2), 117–127 (2002)

    Article  Google Scholar 

  41. Mendel, J.M., Liu, F.: On new quasi-type-2 fuzzy logic systems. In: FUZZ-IEEE 2008, Hong Kong (June 2008)

    Google Scholar 

  42. Mitchell, H.B.: Pattern Recognition Using Type-II Fuzzy Sets. Information Sciences 170, 409–418 (2005)

    Article  Google Scholar 

  43. Mizumoto, M., Tanaka, K.: Some properties of fuzzy set of type-2. Information and control 31, 312–340 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  44. Mizumoto, M., Tanaka, K.: Fuzzy Sets of Type 2 Under Algebraic Product and Algebraic Sum. Fuzzy Sets and Systems 5, 277–290 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  45. Musikasuwan, S., Ozen, T., Garibaldi, J.M.: An investigation into the effect of number of model parameters on performance in type-1 and type-2 fuzzy logic systems. In: Proc. 10th Information Processing and Management of Uncertainty in Knowledge Based Systems (IPMU 2004), Perugia, Italy, pp. 1593–1600 (2004)

    Google Scholar 

  46. Ozen, T., Garibaldi, J.M.: Investigating Adaptation in Type-2 Fuzzy Logic Systems Applied to Umbilical Acid-Base Assessment. In: Proc. of the 2003 European Symposium on Intelligent Technologies, Oulu, Finland, July 2003, pp. 289–294 (2003)

    Google Scholar 

  47. Reznik, L.: Fuzzy Controllers. Reed Elsevier (1997)

    Google Scholar 

  48. Daniel, G.: Schwartz. The case for an interval-based representation of linguistic truth. Fuzzy Sets and Systems 17, 153–165 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  49. Türkşen, I.B.: Interval-valued fuzzy sets and fuzzy connectives. Interval Computations 4, 35–38 (1993)

    Google Scholar 

  50. Türkşen, I.B.: Interval-valued fuzzy uncertainty. In: Proc. Fifth IFSA World Congress, Seoul, Korea, July 1993, pp. 35–38 (1993)

    Google Scholar 

  51. Türkşen, I.B.: Knowledge representation and approximate reasoning with type ii fuzzy sets. In: Proc. FUZZ-IEEE 1995, Yokohama, Japan, March 1995, vol. 2, pp. 1911–1917 (1995)

    Google Scholar 

  52. Türkşen, I.B.: Type 2 Representation and Reasoning for CWW. Fuzzy Sets and Systems 127, 17–36 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. Wagner, C., Hagras, H.: zslices - towards bridging the gap between interval and general type-2 fuzzy logic. In: FUZZ-IEEE 2008, Hong Kong (June 2008)

    Google Scholar 

  54. Wu, D., Tan, W.W.: A Type-2 Fuzzy Logic Controller for the Liquid-level Process. In: Proc. FUZZ-IEEE 2004, Budapest, Hungary, July 2004, pp. 953–958 (2004)

    Google Scholar 

  55. Wu, H., Mendel, J.M.: Introduction to Uncertainty Bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems. In: Proc. FUZZ-IEEE 2001, Melbourne, Australia (2001)

    Google Scholar 

  56. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems 10, 622–639 (2002)

    Article  Google Scholar 

  57. Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  58. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning – I. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  59. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning – II. Information Sciences 8, 301–357 (1975)

    Article  MathSciNet  Google Scholar 

  60. Zadeh, L.A.: The Concept of a Linguistic Variable and its Application to Approximate Reasoning – III. Information Sciences 9, 43–80 (1975)

    Article  MathSciNet  Google Scholar 

  61. Zadeh, L.A.: Fuzzy Logic = Computing with Words. IEEE Transactions on Fuzzy Systems 4, 103–111 (1996)

    Article  Google Scholar 

  62. Zadeh, L.A.: From Computing with Numbers to Computing with Words – From Manipulation of Measurements to Manipulation of Perceptions. IEEE Transactions on Circuits and Systems – I:Fundamental Theory and Applications 45, 105–119 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

John, R., Coupland, S. (2009). Type-2 Fuzzy Logic and the Modelling of Uncertainty in Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics