Semantic Driven Fuzzy Clustering for Human-Centric Information Processing Applications | SpringerLink
Skip to main content

Semantic Driven Fuzzy Clustering for Human-Centric Information Processing Applications

  • Chapter
Human-Centric Information Processing Through Granular Modelling

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 540 Accesses

Abstract

This chapter presents an overview of fuzzy clustering techniques aiming at human-centric information processing applications and introduces the accuracy-interpretability tradeoff into the conceptualization of the clustering process. Nowadays it is a matter of common agreement that the cornerstone notion of information granulation is fundamental for a successful outcome of exploratory data analysis and modeling in fields like science, engineering, economics, medicine and many others. There is no doubt that fuzzy clustering is an excellent medium to obtain such information granules. For a matter of self-containment the chapter starts by presenting the fundamentals of fuzzy clustering along with some variants and extensions. In the second part of the chapter, the fuzzy clustering approach is highlighted as a valuable human-centric interface: the roadmap from data to information granules is displayed along with a discussion on some mechanisms to implement user relevance feedback. In the last part of the chapter a semantic driven evolutionary fuzzy clustering algorithm is analyzed, as a particular instance of a class of unsupervised clustering algorithms which embraces constraints usually applied in supervised learning. The results show that these more general constraints while tuning the equilibrium between accuracy and interpretability concomitantly help to unveil the structural information of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, E.: The Irises of the Gaspe peninsula. Bull. Amer. Iris Soc. 59, 2–5 (1935)

    Google Scholar 

  2. Bargiela, A., Pedrycz, W.: Recursive Information Granulation: Aggregation and Interpretation Issues. IEEE Trans. on Systems, Man, and Cybernetics 33(1), 96–112 (2003)

    Article  Google Scholar 

  3. Bargiela, A., Pedrycz, W.: A Model of Granular Data: a Design Problem with the Tchebyshev FCM. Soft Comput. 9, 155–163 (2005)

    Article  MATH  Google Scholar 

  4. Bargiela, A., Pedrycz, W.: The roots of granular computing. In: Proc. Int. Conference on Granular Computing, pp. 806–809 (2006)

    Google Scholar 

  5. Bensaid, A., et al.: Partially supervised clustering for image segmentation. Pattern Recognition 29, 859–871 (1996)

    Article  Google Scholar 

  6. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  7. Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, I linear structure: Fuzzy c-lines. J. Appl. Math. 40(2), 339–357 (1981)

    MATH  MathSciNet  Google Scholar 

  8. Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, II Fuzzy c-varieties and convex combinations thereof. J. Appl. Math. 40(2), 358–372 (1981)

    MATH  MathSciNet  Google Scholar 

  9. Bezdek, J., Hathaway, R., Sabin, M., Tucker, W.: Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans. Syst., Man and Cybern. 17, 873–877 (1987)

    MATH  Google Scholar 

  10. Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Accuracy Improvements in Linguistic Fuzzy Modeling. Physica-Verlag (2003)

    Google Scholar 

  11. Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Physica-Verlag (2003)

    Google Scholar 

  12. Castellano, G., Fanelli, A., Mencar, C.: Generation of interpretable fuzzy granules by a double-clustering technique. Archives of Control Sciences - Special Issue on Granular Computing 12(4), 397–410 (2002)

    MathSciNet  Google Scholar 

  13. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation Series, vol. 5. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  14. Dave, R.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12, 657–664 (1991)

    Article  Google Scholar 

  15. Dave, R., Sen, S.: On generalising the noise clustering algorithms. In: Proc. of the 7th IFSA World Congress, IFSA 1997, pp. 205–210 (1997)

    Google Scholar 

  16. Dave, R.: Fuzzy shell clustering and application to circle detection in digital images. Int. J. General Syst. 16, 343–355 (1990)

    Article  MathSciNet  Google Scholar 

  17. Davis, L.: Handbook of genetic algorithms. Van Nostrand Reinold (1991)

    Google Scholar 

  18. Egan, M.: Locating clusters in noisy data: a genetic fuzzy c-means clustering algorithm. In: Proceedings of the Conference of the North American Fuzzy Information Processing Society, pp. 178–182. IEEE, Los Alamitos (1998)

    Google Scholar 

  19. Egan, M., Krishnamoorthy, M., Rajan, K.: Comparative Study of a Genetic Fuzzy c-means Algorithm and a Validity Guided Fuzzy c-means Algorithm for Locating Clusters in Noisy Data. In: Proc. International Conference on Evolutionary Computation, pp. 440–445 (1998)

    Google Scholar 

  20. Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  21. Fazendeiro, P., Valente de Oliveira, J.: A Survey of Fuzzy Control Strategies for Neuromuscular Blockade Using Continuous Infusion of Atracurium. In: Proc. FUZZ-IEEE 2002, Honolulu, USA, pp. 547–552 (2002)

    Google Scholar 

  22. Fazendeiro, P., Valente de Oliveira, J.: A Working Hypothesis on the Semantics/Accuracy Synergy. In: Proc. Joint EUSFLAT-LFA, Barcelona, Spain, pp. 266–271 (2005)

    Google Scholar 

  23. Fazendeiro, P., Valente de Oliveira, J.: A semantic driven evolutive fuzzy clustering algorithm. In: Proc. of FUZZ-IEEE, London, UK, July 2007, pp. 1977–1982 (2007)

    Google Scholar 

  24. Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: Multi-objective evolutionary optimization of accuracy and interpretability for neuromuscular blockade control. In: Proc. of IFSA 2005 - The International Fuzzy Systems Association World Congress, Beijing, China, pp. 908–913 (2005)

    Google Scholar 

  25. Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: A Multi-Objective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller. IEEE Trans. on BioMedical Engineering 54(9), 1667–1678 (2007)

    Article  Google Scholar 

  26. Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768–780 (1965)

    Google Scholar 

  27. Fralley, C., Raftery, A.: How many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)

    Article  Google Scholar 

  28. Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recognition 30(7), 1109–1119 (1997)

    Article  Google Scholar 

  29. Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 450–465 (1999)

    Article  Google Scholar 

  30. Gath, I., Geva, A.: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 773–781 (1989)

    Article  Google Scholar 

  31. Geva, A.: Hierarchical Unsupervised Fuzzy Clustering. IEEE Trans. Fuzzy Systems 7(6), 723–733 (1999)

    Article  Google Scholar 

  32. Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE Conf. Decision Contr., San Diego, CA, pp. 761–766 (1979)

    Google Scholar 

  33. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17(2/3), 107–145 (2001)

    Article  MATH  Google Scholar 

  34. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering algorithms and validity measures. In: Proc. 13th International Conference on Scientific and Statistical Database Management, pp. 3–22 (2001)

    Google Scholar 

  35. Hall, L., Ozyurt, B., Bezdek, J.: Clustering with a genetically optimized approach. IEEE Trans. on Evolutionary Computation 3(2), 103–112 (1999)

    Article  Google Scholar 

  36. Hathaway, R., Bezdek, J.: Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Syst. 1, 195–204 (1993)

    Article  Google Scholar 

  37. Hathaway, R., Bezdek, J.: Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. Pattern Recognition Letters 23, 151–160 (2002)

    Article  MATH  Google Scholar 

  38. Hathaway, R., Bezdek, J., Hu, Y.: Generalized Fuzzy c-Means Clustering Strategies Using L p Norm Distances. IEEE Transactions on Fuzzy Systems 5, 576–582 (2000)

    Article  Google Scholar 

  39. Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proceedings of the IEEE 87(9), 1575–1600 (1999)

    Article  Google Scholar 

  40. F. Hoppner, “Fuzzy shell clustering algorithms in image processing– Fuzzy c-rectangular and two rectangular shells,” IEEE Trans. Fuzzy Syst., 5, 599–613 (1997)

    Google Scholar 

  41. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley, Chichester (1999)

    Google Scholar 

  42. Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  43. Klawonn, F., Keller, A.: Fuzzy clustering with evolutionary algorithms. International Journal of Intelligent Systems 13(10/11), 975–991 (1998)

    Article  Google Scholar 

  44. Klawonn, F., Höppner, F.: What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254–264. Springer, Heidelberg (2003)

    Google Scholar 

  45. Krisnapuram, R., Frigui, H., Nasroui, O.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Trans. Fuzzy Syst. 3(1), 29–60 (1995)

    Article  Google Scholar 

  46. Krishnapuram, R., Joshi, A., Yi, L.: A Fuzzy Relative of the k-Medoids Algorithm with Application to Web Document and Snippet Clustering. In: Proc. IEEE International Fuzzy Systems Conference, pp. 1281–1286 (1999)

    Google Scholar 

  47. Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy Systems 1, 98–110 (1993)

    Article  Google Scholar 

  48. Krishnapuram, R., Keller, J.: The possibilistic C-Means algorithm: insights and recommendations. IEEE Trans. on Fuzzy Systems 4, 385–393 (1996)

    Article  Google Scholar 

  49. Liu, G.: Introduction to Combinatorial Mathematics. Mc-Graw-Hill, New York (1968)

    MATH  Google Scholar 

  50. Liu, H., Huang, S.-T.: Evolutionary semi-supervised fuzzy clustering. Pattern Recognition Letters 24, 3105–3113 (2003)

    Article  Google Scholar 

  51. Liu, J., Xie, W.: A genetics-based approach to fuzzy clustering. In: Proc. of the IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2233–2240 (1995)

    Google Scholar 

  52. Loia, V., Pedrycz, W., Senatore, S.: P-FCM: a proximity-based fuzzy clustering for user-centered web applications. International Journal of Approximate Reasoning 34, 121–144 (2003)

    Article  MATH  Google Scholar 

  53. Lorette, A., Descombes, X., Zerubia, J.: Fully unsupervised fuzzy clustering with entropy criterion. Proceedings 15th International Conference on Pattern Recognition 3, 986–989 (2000)

    Google Scholar 

  54. MacQueen, J.: Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. 1, 281–297 (1967)

    MathSciNet  Google Scholar 

  55. Maulik, U., Bandyopadhyay, S.: Performance evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  56. Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. on Geoscience and Remote Sensing 41(5), 1075–1081 (2003)

    Article  Google Scholar 

  57. Miller, G.: The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)

    Article  Google Scholar 

  58. Milligan, G., Cooper, C.: An examination of procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50(2), 159–179 (1985)

    Article  Google Scholar 

  59. Ohashi, Y.: Fuzzy Clustering and robust estimation. In: Proc. of 9th Meeting SAS User Group Int., Florida (1984)

    Google Scholar 

  60. Pal, N., Bezdek, J.: On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)

    Article  Google Scholar 

  61. Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural network. IEEE Trans. Neural Networks 9, 601–612 (1998)

    Article  Google Scholar 

  62. Pedrycz, W., Valente de Oliveira, J.: An Algorithmic Framework for Development and Optimization of Fuzzy Models. Special issue of Fuzzy Sets and Systems on Fuzzy Modelling 80(1), 37–55 (1996)

    Google Scholar 

  63. Pedrycz, W., Vukovich, G.: Abstraction and Specialization of Information Granules. IEEE Trans. on Systems, Man and Cybernetics, Part B 31(1), 106–111 (2001)

    Article  Google Scholar 

  64. Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans. on Systems, Man and Cybernetics, Part B 27(5), 787–795 (1997)

    Article  Google Scholar 

  65. Runkler, T., Bezdek, J.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst. 7, 377–393 (1999)

    Article  Google Scholar 

  66. Runkler, T.: Ant colony optimization of clustering models. International Journal of Intelligent Systems 20(12), 1233–1261 (2005)

    Article  MATH  Google Scholar 

  67. Runkler, T., Katz, C.: Fuzzy Clustering by Particle Swarm Optimization. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 601–608 (2006)

    Google Scholar 

  68. Ruspini, E.: A New Approach to Clustering. Information Control 15, 22–32 (1969)

    Article  MATH  Google Scholar 

  69. Sarkar, M.: Evolutionary programming-based fuzzy clustering. In: Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 247–254. MIT Press, Cambridge (1996)

    Google Scholar 

  70. Valente de Oliveira, J.: A design methodology for fuzzy system interfaces. IEEE Trans. on Fuzzy Systems 3(4), 404–414 (1995)

    Article  Google Scholar 

  71. Valente de Oliveira, J.: Semantic Constraints for Membership Function Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Man 29(1), 128–138 (1999)

    Article  Google Scholar 

  72. Valente de Oliveira, J., Pedrycz, W. (eds.): Advances in Fuzzy Clustering and Its Applications. Wiley, Chichester (2007)

    Google Scholar 

  73. Wei, C.-H., Fahn, C.-S.: A distributed approach to fuzzy clustering by genetic algorithms. In: Proceedings of the Asian Fuzzy Systems Symposium, pp. 350–357 (1996)

    Google Scholar 

  74. Xie, X., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)

    Article  Google Scholar 

  75. Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Trans. on Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  76. Yuan, B., Klir, G., Swan-Stone, J.: Evolutionary fuzzy c-means clustering algorithm. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2221–2226 (1995)

    Google Scholar 

  77. Zadeh, L.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  78. Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man, and Cybernetics SMC-3(1), 28–44 (1973)

    MathSciNet  Google Scholar 

  79. Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (part I) (1975); 301–357 (part II)

    Article  MathSciNet  Google Scholar 

  80. Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 9, 43–80 (1976) (part III)

    Article  MathSciNet  Google Scholar 

  81. Zadeh, L.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4(2), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  82. Zadeh, L.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  83. Zadeh, L.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2(1), 23–25 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fazendeiro, P., de Oliveira, J.V. (2009). Semantic Driven Fuzzy Clustering for Human-Centric Information Processing Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics