Abstract
This chapter presents an overview of fuzzy clustering techniques aiming at human-centric information processing applications and introduces the accuracy-interpretability tradeoff into the conceptualization of the clustering process. Nowadays it is a matter of common agreement that the cornerstone notion of information granulation is fundamental for a successful outcome of exploratory data analysis and modeling in fields like science, engineering, economics, medicine and many others. There is no doubt that fuzzy clustering is an excellent medium to obtain such information granules. For a matter of self-containment the chapter starts by presenting the fundamentals of fuzzy clustering along with some variants and extensions. In the second part of the chapter, the fuzzy clustering approach is highlighted as a valuable human-centric interface: the roadmap from data to information granules is displayed along with a discussion on some mechanisms to implement user relevance feedback. In the last part of the chapter a semantic driven evolutionary fuzzy clustering algorithm is analyzed, as a particular instance of a class of unsupervised clustering algorithms which embraces constraints usually applied in supervised learning. The results show that these more general constraints while tuning the equilibrium between accuracy and interpretability concomitantly help to unveil the structural information of the data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, E.: The Irises of the Gaspe peninsula. Bull. Amer. Iris Soc. 59, 2–5 (1935)
Bargiela, A., Pedrycz, W.: Recursive Information Granulation: Aggregation and Interpretation Issues. IEEE Trans. on Systems, Man, and Cybernetics 33(1), 96–112 (2003)
Bargiela, A., Pedrycz, W.: A Model of Granular Data: a Design Problem with the Tchebyshev FCM. Soft Comput. 9, 155–163 (2005)
Bargiela, A., Pedrycz, W.: The roots of granular computing. In: Proc. Int. Conference on Granular Computing, pp. 806–809 (2006)
Bensaid, A., et al.: Partially supervised clustering for image segmentation. Pattern Recognition 29, 859–871 (1996)
Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, I linear structure: Fuzzy c-lines. J. Appl. Math. 40(2), 339–357 (1981)
Bezdek, J., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure, II Fuzzy c-varieties and convex combinations thereof. J. Appl. Math. 40(2), 358–372 (1981)
Bezdek, J., Hathaway, R., Sabin, M., Tucker, W.: Convergence theory for fuzzy c-means: Counterexamples and repairs. IEEE Trans. Syst., Man and Cybern. 17, 873–877 (1987)
Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Accuracy Improvements in Linguistic Fuzzy Modeling. Physica-Verlag (2003)
Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds.): Interpretability Issues in Fuzzy Modeling. Physica-Verlag (2003)
Castellano, G., Fanelli, A., Mencar, C.: Generation of interpretable fuzzy granules by a double-clustering technique. Archives of Control Sciences - Special Issue on Granular Computing 12(4), 397–410 (2002)
Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation Series, vol. 5. Springer, Heidelberg (2002)
Dave, R.: Characterization and detection of noise in clustering. Pattern Recognition Letters 12, 657–664 (1991)
Dave, R., Sen, S.: On generalising the noise clustering algorithms. In: Proc. of the 7th IFSA World Congress, IFSA 1997, pp. 205–210 (1997)
Dave, R.: Fuzzy shell clustering and application to circle detection in digital images. Int. J. General Syst. 16, 343–355 (1990)
Davis, L.: Handbook of genetic algorithms. Van Nostrand Reinold (1991)
Egan, M.: Locating clusters in noisy data: a genetic fuzzy c-means clustering algorithm. In: Proceedings of the Conference of the North American Fuzzy Information Processing Society, pp. 178–182. IEEE, Los Alamitos (1998)
Egan, M., Krishnamoorthy, M., Rajan, K.: Comparative Study of a Genetic Fuzzy c-means Algorithm and a Validity Guided Fuzzy c-means Algorithm for Locating Clusters in Noisy Data. In: Proc. International Conference on Evolutionary Computation, pp. 440–445 (1998)
Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata. In: Whitley, L.D. (ed.) Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)
Fazendeiro, P., Valente de Oliveira, J.: A Survey of Fuzzy Control Strategies for Neuromuscular Blockade Using Continuous Infusion of Atracurium. In: Proc. FUZZ-IEEE 2002, Honolulu, USA, pp. 547–552 (2002)
Fazendeiro, P., Valente de Oliveira, J.: A Working Hypothesis on the Semantics/Accuracy Synergy. In: Proc. Joint EUSFLAT-LFA, Barcelona, Spain, pp. 266–271 (2005)
Fazendeiro, P., Valente de Oliveira, J.: A semantic driven evolutive fuzzy clustering algorithm. In: Proc. of FUZZ-IEEE, London, UK, July 2007, pp. 1977–1982 (2007)
Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: Multi-objective evolutionary optimization of accuracy and interpretability for neuromuscular blockade control. In: Proc. of IFSA 2005 - The International Fuzzy Systems Association World Congress, Beijing, China, pp. 908–913 (2005)
Fazendeiro, P., Valente de Oliveira, J., Pedrycz, W.: A Multi-Objective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller. IEEE Trans. on BioMedical Engineering 54(9), 1667–1678 (2007)
Forgy, E.: Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications. Biometrics 21, 768–780 (1965)
Fralley, C., Raftery, A.: How many Clusters? Which Clustering Method? Answers via Model-Based Cluster Analysis. The Computer Journal 41(8), 578–588 (1998)
Frigui, H., Krishnapuram, R.: Clustering by competitive agglomeration. Pattern Recognition 30(7), 1109–1119 (1997)
Frigui, H., Krishnapuram, R.: A robust competitive clustering algorithm with applications in computer vision. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 450–465 (1999)
Gath, I., Geva, A.: Unsupervised Optimal Fuzzy Clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 773–781 (1989)
Geva, A.: Hierarchical Unsupervised Fuzzy Clustering. IEEE Trans. Fuzzy Systems 7(6), 723–733 (1999)
Gustafson, D., Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. In: Proc. IEEE Conf. Decision Contr., San Diego, CA, pp. 761–766 (1979)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On Clustering Validation Techniques. Journal of Intelligent Information Systems 17(2/3), 107–145 (2001)
Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering algorithms and validity measures. In: Proc. 13th International Conference on Scientific and Statistical Database Management, pp. 3–22 (2001)
Hall, L., Ozyurt, B., Bezdek, J.: Clustering with a genetically optimized approach. IEEE Trans. on Evolutionary Computation 3(2), 103–112 (1999)
Hathaway, R., Bezdek, J.: Switching regression models and fuzzy clustering. IEEE Trans. Fuzzy Syst. 1, 195–204 (1993)
Hathaway, R., Bezdek, J.: Clustering incomplete relational data using the non-Euclidean relational fuzzy c-means algorithm. Pattern Recognition Letters 23, 151–160 (2002)
Hathaway, R., Bezdek, J., Hu, Y.: Generalized Fuzzy c-Means Clustering Strategies Using L p Norm Distances. IEEE Transactions on Fuzzy Systems 5, 576–582 (2000)
Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. Proceedings of the IEEE 87(9), 1575–1600 (1999)
F. Hoppner, “Fuzzy shell clustering algorithms in image processing– Fuzzy c-rectangular and two rectangular shells,” IEEE Trans. Fuzzy Syst., 5, 599–613 (1997)
Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley, Chichester (1999)
Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999)
Klawonn, F., Keller, A.: Fuzzy clustering with evolutionary algorithms. International Journal of Intelligent Systems 13(10/11), 975–991 (1998)
Klawonn, F., Höppner, F.: What is fuzzy about fuzzy clustering? Understanding and improving the concept of the fuzzifier. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) IDA 2003. LNCS, vol. 2810, pp. 254–264. Springer, Heidelberg (2003)
Krisnapuram, R., Frigui, H., Nasroui, O.: Fuzzy and possibilistic shell clustering algorithms and their application to boundary detection and surface approximation. IEEE Trans. Fuzzy Syst. 3(1), 29–60 (1995)
Krishnapuram, R., Joshi, A., Yi, L.: A Fuzzy Relative of the k-Medoids Algorithm with Application to Web Document and Snippet Clustering. In: Proc. IEEE International Fuzzy Systems Conference, pp. 1281–1286 (1999)
Krishnapuram, R., Keller, J.: A possibilistic approach to clustering. IEEE Trans. on Fuzzy Systems 1, 98–110 (1993)
Krishnapuram, R., Keller, J.: The possibilistic C-Means algorithm: insights and recommendations. IEEE Trans. on Fuzzy Systems 4, 385–393 (1996)
Liu, G.: Introduction to Combinatorial Mathematics. Mc-Graw-Hill, New York (1968)
Liu, H., Huang, S.-T.: Evolutionary semi-supervised fuzzy clustering. Pattern Recognition Letters 24, 3105–3113 (2003)
Liu, J., Xie, W.: A genetics-based approach to fuzzy clustering. In: Proc. of the IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2233–2240 (1995)
Loia, V., Pedrycz, W., Senatore, S.: P-FCM: a proximity-based fuzzy clustering for user-centered web applications. International Journal of Approximate Reasoning 34, 121–144 (2003)
Lorette, A., Descombes, X., Zerubia, J.: Fully unsupervised fuzzy clustering with entropy criterion. Proceedings 15th International Conference on Pattern Recognition 3, 986–989 (2000)
MacQueen, J.: Some methods for classification and analysis of multivariate observations. Proc. 5th Berkeley Symp. 1, 281–297 (1967)
Maulik, U., Bandyopadhyay, S.: Performance evaluation of Some Clustering Algorithms and Validity Indices. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(12), 1650–1654 (2002)
Maulik, U., Bandyopadhyay, S.: Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification. IEEE Trans. on Geoscience and Remote Sensing 41(5), 1075–1081 (2003)
Miller, G.: The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956)
Milligan, G., Cooper, C.: An examination of procedures for Determining the Number of Clusters in a Data Set. Psychometrika 50(2), 159–179 (1985)
Ohashi, Y.: Fuzzy Clustering and robust estimation. In: Proc. of 9th Meeting SAS User Group Int., Florida (1984)
Pal, N., Bezdek, J.: On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems 3(3), 370–379 (1995)
Pedrycz, W.: Conditional fuzzy clustering in the design of radial basis function neural network. IEEE Trans. Neural Networks 9, 601–612 (1998)
Pedrycz, W., Valente de Oliveira, J.: An Algorithmic Framework for Development and Optimization of Fuzzy Models. Special issue of Fuzzy Sets and Systems on Fuzzy Modelling 80(1), 37–55 (1996)
Pedrycz, W., Vukovich, G.: Abstraction and Specialization of Information Granules. IEEE Trans. on Systems, Man and Cybernetics, Part B 31(1), 106–111 (2001)
Pedrycz, W., Waletzky, J.: Fuzzy Clustering with Partial Supervision. IEEE Trans. on Systems, Man and Cybernetics, Part B 27(5), 787–795 (1997)
Runkler, T., Bezdek, J.: Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst. 7, 377–393 (1999)
Runkler, T.: Ant colony optimization of clustering models. International Journal of Intelligent Systems 20(12), 1233–1261 (2005)
Runkler, T., Katz, C.: Fuzzy Clustering by Particle Swarm Optimization. In: Proc. IEEE International Conference on Fuzzy Systems, pp. 601–608 (2006)
Ruspini, E.: A New Approach to Clustering. Information Control 15, 22–32 (1969)
Sarkar, M.: Evolutionary programming-based fuzzy clustering. In: Proc. of the Fifth Annual Conference on Evolutionary Programming, pp. 247–254. MIT Press, Cambridge (1996)
Valente de Oliveira, J.: A design methodology for fuzzy system interfaces. IEEE Trans. on Fuzzy Systems 3(4), 404–414 (1995)
Valente de Oliveira, J.: Semantic Constraints for Membership Function Optimization. IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Man 29(1), 128–138 (1999)
Valente de Oliveira, J., Pedrycz, W. (eds.): Advances in Fuzzy Clustering and Its Applications. Wiley, Chichester (2007)
Wei, C.-H., Fahn, C.-S.: A distributed approach to fuzzy clustering by genetic algorithms. In: Proceedings of the Asian Fuzzy Systems Symposium, pp. 350–357 (1996)
Xie, X., Beni, G.: A Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13, 841–847 (1991)
Xu, R., Wunsch II, D.: Survey of Clustering Algorithms. IEEE Trans. on Neural Networks 16(3), 645–678 (2005)
Yuan, B., Klir, G., Swan-Stone, J.: Evolutionary fuzzy c-means clustering algorithm. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. 4, pp. 2221–2226 (1995)
Zadeh, L.: Fuzzy sets. Inform. Contr. 8, 338–353 (1965)
Zadeh, L.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Systems, Man, and Cybernetics SMC-3(1), 28–44 (1973)
Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (part I) (1975); 301–357 (part II)
Zadeh, L.: The concept of linguistic variable and its application to approximate reasoning. Information Sciences 9, 43–80 (1976) (part III)
Zadeh, L.: Fuzzy logic = computing with words. IEEE Trans. on Fuzzy Systems 4(2), 103–111 (1996)
Zadeh, L.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)
Zadeh, L.: Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems. Soft Computing 2(1), 23–25 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Fazendeiro, P., de Oliveira, J.V. (2009). Semantic Driven Fuzzy Clustering for Human-Centric Information Processing Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)