Abstract
Human-Centric Information Processing requires tight communication processes between users and computers. These two actors, however, traditionally use different paradigms for representing and manipulating information. Users are more inclined in managing perceptual information, usually expressed in natural language, whilst computers are formidable number-crunching systems, capable of manipulating information expressed in precise form. Fuzzy information granules could be used as a common interface for communicating information and knowledge, because of their ability of representing perceptual information in a computer manageable form. Nonetheless, this connection could be established only if information granules are interpretable, i.e. they are semantically co-intensive with human knowledge. Interpretable information granulation opens several methodological issues, regarding the representation and manipulation of information granules, the interpretability constraints and the granulation processes. By taking into account all such issues, effective Information Processing systems could be designed with a strong Human-Centric imprint.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering. Toward Human-Centric Computing. John Wiley & Sons, Hoboken (2007)
Pazzani, M.J.: Knowledge discovery from data? IEEE Intell. Syst. 15(2), 10–12 (2000)
Jaimes, A., Gatica-Perez, D., Sebe, N., Huang, T.S.: Human-Centered Computing–Toward a Human Revolution. IEEE Computer 40(5), 30–34 (2007)
Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Syst. 90, 111–117 (1997)
Zadeh, L.A.: Graduation and granulation are keys to computation with information described in natural language. In: Proc. of IEEE GrC 2006, p. 30 (2006)
Zadeh, L.A.: Toward Human-Level Machine Intelligence. In: Proc. of SOFA 2007, pp. 9–10 (2007)
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)
Bargiela, A., Pedrycz, W.: Toward a Theory of Granular Computing for Human-Centered Information Processing. IEEE Trans. on Fuzzy Syst. 16(2), 320–330 (2008)
Zadeh, L.A.: Toward a generalized theory of uncertainty (GTU): an outline. Inf. Sci. 172, 1–2 (2005)
Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178(13), 2751–2779 (2008)
Zadeh, L.A.: A New Frontier in Computation – Computation with Information Described in Natural Language. In: Proc. of 2006 IEEE Conf. on Intell, pp. 5–6 (2006)
Dubois, D., Prade, H.: What are fuzzy rules and how to use them. Fuzzy Sets Syst 84(2), 169–185 (1996)
Brandom, R.: Semantic Paradox of Material Implication. Notre Dame J. of Form. Log. 22(2), 129–132 (1981)
Türksen, I.B.: An Ontological and Epistemological Perspective of Fuzzy Set Theory. Elsevier, Amsterdam (2005)
Roychowdhury, S.: An Inquiry into the Theory of Defuzzification. In: Pedrycz, W. (ed.) Granular Computing: an Emerging Paradigm, pp. 143–162. Physica-Verlag (2001)
Zhou, Z.H.: Comprehensibility of Data Mining Algorithms. In: Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, Hershey, PA, pp. 190–195 (2005)
Giboin, A.: ML Comprehensibility and KBS explanation: stating the problem collaboratively. In: Proc. of IJCAI 1995 Workshop on Machine Learning and Comprehensibility, pp. 1–11 (1995)
Mencar, C., Castellano, G., Fanelli, A.M.: On the role of interpretability in fuzzy data mining. Int. J. of Uncertain., Fuzziness and Knowl. Based Syst. 15, 521–537 (2007)
Michalski, R.S.: Knowledge Mining: A Proposed New Direction. In: Proc. of Symp. on Data Mining and Semantic Web (2003), http://www.mli.gmu.edu/papers/2003-2004/03-5.pdf
Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Art. Intell. in Medicine 16(2), 121–128 (1999)
Guillaim, S.: Designing fuzzy inference systems from data: An interpretability-oriented review. IEEE Trans. Fuzzy Syst. 9(3), 426–443 (2001)
Michalski, R.S.: A theory and methodology of inductive learning. Artif. Intell. 20, 111–161 (1983)
Johansson, U., Niklasson, L., Knig, R.: Accuracy vs. Comprehensibility in Data Mining Models. In: Proc. of the 7th Int. Conf. on Inform. Fusion, pp. 295–300 (2004)
Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review 63, 81–97 (1956), http://www.well.com/user/smalin/miller.html (electronic reproduction by Stephen Malinowski)
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. on Syst., Man and Cybern. 3(1), 28–44 (1973)
Pham, B., Brown, R.: Visualisation of fuzzy systems: requirements, techniques and framework. Future Gener. Comput. Syst 21(7), 1199–1212 (2005)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a Fuzzy Logic controller. Int. J. of Human-Comput. Studies 51(2), 135–147 (1999)
Roychowdhury, R., Pedrycz, W.: A survey of defuzzification strategies. Int. J.of Intell. Syst. 16(6), 679–695 (2001)
van de Merckt, T., Decaestecker, C.: Multiple- Knowledge Representations in Concept Learning. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS (LNAI), vol. 912, pp. 200–217. Springer, Heidelberg (1995)
Domingos, P.: Knowledge Discovery Via Multiple Models. Intell. Data Analysis 2(3), 187–202 (1998)
Sun, R., Slusarz, P., Terry, C.: The Interaction of the Explicit and the Implicit in Skill Learning: A Dual-Process Approach. Psych. Rev. 112(1), 159–192
Stadler, M., Frensch, P.: Handbook of implicit learning. Sage, Thousand Oaks (1998)
Pedrycz, W.: Knowledge Based Clustering: from Data to Information Granules. John Wiley & Sons, Hoboken (2005)
Mencar, C., Castellano, G., Fanelli, A.M.: Balancing Interpretability and Accuracy by Multi-Level Fuzzy Information Granulation. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 2157–2163 (2006)
Mencar, C., Fanelli, A.M.: Interpretability constraints for fuzzy information granulation. Inf. Sci. 178(24), 4585–4618 (2008)
Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge (1998)
Garibaldi, J.M., Musikasuwan, S., Ozen, T., John, R.I.: A Case Study to Illustrate the Use of Non-Convex Membership Functions for Linguistic Terms. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., vol. 3, pp. 1403–1408 (2004)
Zadeh, L.A.: The concept of Linguistic Variable and its application to approximate reasoning. Inf. Sci. 8, 199–249 (1975)
Bodenhofer, U., Bauer, P.: Interpretability of linguistic variables: a formal account. Kybernetika 41(2), 227–248 (2005)
Gegov, A.: Complexity Management in Fuzzy Systems: A Rule Base Compression Approach. Studies in Fuzziness and Soft Computing, vol. 211. Springer, Heidelberg (2007)
de Oliveira, J.V.: Semantic constraints for membership function optimization. IEEE Trans. on Syst., Man and Cybern. A 29(1), 128–138 (1999)
Roubos, H., Setnes, M.: Compact fuzzy models through complexity reduction and evolutionary optimization. In: Proc. of 9th IEEE Int. Conf. on Fuzzy Syst., vol. 2, pp. 762–767 (2000)
Mencar, C., Castellano, G., Fanelli, A.M.: Distinguishability quantification of fuzzy sets. Inform. Sci. 177, 30–149 (2007)
de Oliveira, J.V.: Towards neuro-linguistic modeling: Constraints for optimization of membership functions. Fuzzy Sets and Syst. 106, 357–380 (1999)
Hermann, C.S.: Symbolic reasoning about numerical data: A hybrid approach. Appl. Intell. 7, 339–354 (1997)
Jin, Y., Von Seelen, W., Sendhoff, B.: On generating FC3 fuzzy rule systems from data using evolution strategies. IEEE Trans. on Syst., Man and Cybern. B 29(6), 829–845 (1999)
Peña-Reyes, C., Sipper, M.: Fuzzy CoCo: Balancing Accuracy and Interpretability of Fuzzy Models by Means of Coevolution. In: Casillas, J., Cordon, O., Herrera, F., Magdalena, L. (eds.) Accuracy Improvements in Linguistic Fuzzy Modeling, pp. 119–146. Springer, Heidelberg (2003)
Perfilieva, I., Lehmke, S.: Correct models of fuzzy IF–THEN rules are continuous. Fuzzy Sets and Syst. 157(24), 3188–3197 (2006)
Dubois, D., Prade, H., Ughetto, L.: Checking the Coherence and Redundancy of Fuzzy Knowledge Bases. IEEE Trans. on Fuzzy Syst. 5(3), 398–417 (1997)
Guillaume, S.: Designing Fuzzy Inference Systems from Data: An Interpretability-Oriented Review. IEEE Trans. on Fuzzy Syst. 9(3), 426–443 (2001)
Guillaume, S., Charnomordic, B.: Generating an Interpretable Family of Fuzzy Partitions From Data. IEEE Trans. on Fuzzy Syst. 12(3), 324–335 (2004)
de Oliveira, J.V.: Towards neuro-linguistic modeling: Constraints for optimization of membership functions. Fuzzy Sets and Syst. 106(3), 357–380 (1999)
Nauck, D.D.: Fuzzy data analysis with NEFCLASS. Int. J. on Approx. Reason. 32(2-3), 103–130 (2003)
Mikut, R., Jäkel, J., Gröll, L.: Interpretability issues in data-based learning of fuzzy systems. Fuzzy Sets and Syst. 150(2), 179–197 (2005)
Baraldi, A., Blonda, P.: A survey of fuzzy clustering algorithms for pattern recognition. Parts I & II. IEEE Trans. on Syst., Man, and Cybern. B 29(6), 778–801 (1999)
Roubos, H., Setnes, M.: Compact and transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. on Fuzzy Syst. 9(4), 516–524 (2001)
Castellano, G., Fanelli, A.M., Mencar, C.: DCf: a double clustering framework for fuzzy information granulation. In: Proc. of IEEE Intern. Conf. on Granular Comput., vol. 2, pp. 397–400 (2005)
Castellano, G., Fanelli, A.M., Mencar, C., Plantamura, V.: Classifying data with interpretable fuzzy granulation. In: Proc. of SCIS&ISIS, pp. 872–877 (2006)
Mencar, C., Consiglio, A., Fanelli, A.M.: DCγ: Interpretable Granulation of Data through GA-based Double Clustering. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 1–6 (2007)
Ishibuchi, H., Nojima, Y.: Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning. Int. J. of Approx. Reason. 44, 4–31 (2007)
Riid, A., Rustern, E.: Interpretability of Fuzzy Systems and Its Application to Process Control. In: Proc. of IEEE Int. Conf. on Fuzzy Syst., pp. 1–6 (2007)
Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inform. Sci. 177, 988–1006 (2007)
Novák, V., Perfilieva, I., Dvorǎk, A., Chen, G., Wei, Q., Yan, P.: Mining pure linguistic associations from numerical data. Int. J. on Approx. Reason. 48, 4–22 (2008)
Herrera, F., Herrera-Viedma, E., Martínez, L.: A Fuzzy Linguistic Methodology to Deal With Unbalanced Linguistic Term Sets. IEEE Trans. on Fuzzy Syst. 16(2), 354–370 (2008)
Drobics, M., Himmelbauer, J.: Creating comprehensible regression models. Soft. Comput. 11, 421–438 (2007)
Dimitrov, V., Russell, D.: The Fuzziness of Communication. Fell L, Russell D, Stewart A, Seized by Agreement, Swamped by Understanding. Hawkesbury Printing, University of Western Sydney. (1994), http://www.univie.ac.at/constructivism/pub/seized/fuzcom.html
Cowan, N., Morey, C.C., Chen, Z.: The legend of the magical number seven. In: Della Sala, S. (ed.) Tall Tales about the Mind and Brain - Separating Fact from Fiction, pp. 45–59. Oxford University Press, Oxford (2007)
Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Sys 90(2), 141–150 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mencar, C. (2009). Interpretability of Fuzzy Information Granules. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)