Abstract
Based on the theory of concept lattice and fuzzy concept lattice, a mathematical model of a concept granular computing system is established, and relationships of the system and concept lattices, various variable threshold concept lattices and fuzzy concept lattices are then investigated. For this system, concept granules, sufficiency information granules and necessity information granules which are used to express different relations between a set of objects and a set of attributes are proposed. Approaches to construct sufficiency and necessity information granules are also shown. Some iterative algorithms to form concept granules are proposed. It is proved that the concept granules obtained by the iterative algorithms are the sub-concept granules or sup-concept granules under some conditions for this system. Finally, we give rough approximations based on fuzzy concept lattice in formal concept analysis.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belohlavek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4), 497–504 (1999)
Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York (2002)
Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128, 277–298 (2004)
Belohlavek, R., Sklenar, V., Zacpal, J.: Crisply generated fuzzy concepts. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS, vol. 3403, pp. 269–284. Springer, Heidelberg (2005)
Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: The IEEE International Conference on Fuzzy Systems, USA, pp. 663–668 (2005)
Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proceedings of CLA 2005, 3rd International Conference on Concept Lattices and their Applications, Olomouc, Czech Republic, pp. 34–45 (2005)
Belohlavek, R.: A note on variable threshold concept lattices: threshold-based operators are reducible to classical concept-forming operators. Information Sciences 177, 3186–3191 (2007)
Burusco, A., Fuentes-Gonzales, R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing I(3), 209–218 (1994)
Burusco, A., Fuentes-Gonzales, R.: Concept lattices defined from implication operators. Fuzzy Sets and Systems 114, 431–436 (2000)
Burusco, A., Fuentes-Gonzales, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets and Systems 97, 109–114 (1998)
Chaudron, L., Maille, N.: Generalized formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 357–370. Springer, Heidelberg (2000)
Chen, D.G., Zhang, W.X., Yeung, D., et al.: Rough approximations on a completely distributive lattice with applications to generalized rough sets. Information Science 176(13), 1829–1948 (2006)
Deogun, J.S., Saqer, J.: Monotone concepts for formal concept analysis. Discrete Applied Mathematics 144, 70–78 (2004)
Dubois, D., Prade, H.: Twofold fuzzy sets and rough sets—some issues in knowledge representation. Fuzzy Sets and Systems 23, 3–18 (1987)
Duntsch, I., Gediga, G.: Modal-style operators in qualitative data analysis. In: Proc. 2002 IEEE Inter. Conf. on Data Mining, pp. 155–162 (2002)
Elloumi, S., Jaam, J., Hasnah, A., et al.: A multi-level conceptual data reduction approach based in the Lukasiewicz implication. Information Sciences 163(4), 253–262 (2004)
Fan, S.Q., Zhang, W.X., Xu, W.: Fuzzy inference based on fuzzy concept lattice. Fuzzy Sets and Systems 157, 3177–3187 (2006)
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin (1999)
Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematic Logic 43(8), 1009–1039 (2004)
Hobbs, J.R.: Granularity. In: Proc of IJCAI, Los Angeles, pp. 432–435 (1985)
Hu, K., Sui, Y., Lu, Y., et al.: Concept approximation in concept lattice. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 167–173. Springer, Heidelberg (2001)
Jaoua, A., Elloumi, S.: Galois connection, formal concept and Galois lattice in real binary relation. Journal of Systems and Software 60(2), 149–163 (2002)
Kent, R.E.: Rough concept analysis: a synthesis of rough sets and formal concept analysis. Fund. Inform. 27, 169–181 (1996)
Krajci, S.: Cluster based efficient generation of fuzzy concepts. Neural Network World 5, 521–530 (2003)
Latiri, C.C., Elloumi, S., Chevallet, J.P., et al.: Extension of fuzzy Galois connection for information retrieval using a fuzzy quantifier. In: ACS/IEEE International Conference on Computer Systems and Applications, Tunis, Tunisia (2003)
Ma, J.M., Zhang, W.X., Leung, Y., et al.: Granular computing and dual Galois connection. Information Science 177, 5365–5377 (2007)
Morsi, N.N., Yakout, M.M.: Axiomatic for fuzzy rough sets. Fuzzy Sets and Systems 100, 327–342 (1998)
Popescu, A.: A general approach to fuzzy concepts. Mathematical Logic Quarterly 50(3), 1–17 (2001)
Qiu, G.F.: Learning models based on formal context. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS, vol. 4481, pp. 419–426. Springer, Heidelberg (2007)
Saquer, J., Deogun, J.S.: Formal rough concept analysis. In: Zhong, N., Skowron, A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS, vol. 1711, pp. 91–99. Springer, Heidelberg (1999)
Shao, M.W., Liu, M., Zhang, W.X.: Set approximations in fuzzy formal concept analysis. Fuzzy Sets and Systems 158, 2627–2640 (2007)
Skowron, A., Stepaniuk, J.: Information granules: towards foundations of granular computing. International Journal of Intelligent Systems 16, 57–85 (2001)
Wang, G.J.: Non-Classical Mathematical Logic and Approximate Reasoning. Science Press, Beijing (2000)
Wang, G.J., Zhang, W.X.: Consistency degree of finite theories in Lukasiwicz propositional fuzzy logic. Fuzzy Sets and Systems 149, 275–284 (2005)
Wang, H., Zhang, W.X.: Relationships between concept lattice and rough set. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS, vol. 4029, pp. 538–547. Springer, Heidelberg (2006)
Ward, M., Dilworth, R.P.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)
Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)
Wolff, K.E.: A conceptual view of knowledge bases in rough set theory. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 220–228. Springer, Heidelberg (2001)
Wu, W.Z., Mi, J.S., Zhang, W.X.: Generalized fuzzy rough sets. Information Sciences 151, 263–282 (2003)
Yahia, S., Jaoua, A.: Discovering knowledge from fuzzy concept lattice. In: Kandel, A., Last, M., Bunke, H. (eds.) Data Mining and Computational Intelligence, pp. 167–190. Physica-Verlag (2001)
Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16, 87–104 (2001)
Yao, Y.Y.: Concept lattices in rough set theory. In: Proc. 2004 Annu. Meeting of the North American Fuzzy Information Processing Society, pp. 796–801 (2004)
Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS, vol. 3066, pp. 59–68. Springer, Heidelberg (2004)
Yao, Y.Y., Chen, Y.: Rough set approximations in formal concept analysis. In: 2004 Annu. Meeting of the North American Fuzzy Information Processing Society, pp. 73–78 (2004)
Zadeh, L.A.: Fuzzy sets and information granularity. In: Gupta, N., Yager, R. (eds.) Advances in Fuzzy Set Theory and Application, pp. 3–18. Northholland, Amsterdam (1979)
Zadeh, L.A.: Fuzzy logic-computing with words. IEEE Transactions on Fuzzy Systems 4, 103–111 (1996)
Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 19, 111–127 (1997)
Zhang, W.X., Leung, Y., Wu, W.Z.: Information Systems and Knowledge Discovery. Science Press, Beijing (2003)
Zhang, W.X., Qiu, G.F.: Uncertain Decision Making Based on Rough Sets. Tsinghua University Press, Beijing (2003)
Zhang, W.X., Wei, L., Qi, J.J.: Attribute reduction theory and approach to concept lattice. Science in China Series F-Information Sciences, vol. 48(b), pp. 713–726 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Zhang, Wx., Yang, Hz., Ma, Jm., Qiu, Gf. (2009). Concept Granular Computing Based on Lattice Theoretic Setting. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)