Integrative Levels of Granularity | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

In their book, Granular Computing: An Introduction, Bargiela and Pedrycz present a view that granular computing is an emerging conceptual and computing paradigm of information processing. A central notion is an information-processing pyramid with multiple levels. Different levels involve different types of processing. The lowest level concerns numeric processing, the intermediate level concerns larger information granules, and the highest level concerns symbol-based processing. This chapter examines the notion of integrative levels of granularity as a basis of granular computing. The notion of levels had been studied extensively in different branches of sciences and different fields of computer sciences. By extracting a set of common features and principles of integrative levels of granularity, the triarchic theory of granular computing is developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahl, V., Allen, T.F.H.: Hierarchy Theory, a Vision, Vocabulary and Epistemology. Columbia University Press (1996)

    Google Scholar 

  2. Allen, T.F.: A Summary of the Principles of Hierarchy Theory (accessed March 11, 2005), http://www.isss.org/hierarchy.htm

  3. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  4. Bargiela, A., Pedrycz, W.: The roots of granular computing. In: Proceedings of 2006 IEEE International Conference on Granular Computing, pp. 806–809 (2006)

    Google Scholar 

  5. Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE Transactions on Fuzzy Systems (to appear, 2008)

    Google Scholar 

  6. Capra, F.: The Web of Life. Anchor Books, New York (1997)

    Google Scholar 

  7. Chen, Y.H., Yao, Y.Y.: A multiview approach for intelligent data analysis based on data operators. Information Sciences 178, 1–20 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Conger, G.P.: The doctrine of levels. The Journal of Philosophy 22, 309–321 (1925)

    Article  Google Scholar 

  9. Craik, F.I.M.: Levels of processing: past, present ...and future? Memory 10, 305–318 (2002)

    Article  Google Scholar 

  10. Craik, F.I.M., Lockhart, R.S.: Levels of processing: a framework for memory research. Journal of Verbal Learning and Verbal Behavior 11, 671–684 (1972)

    Article  Google Scholar 

  11. Feibleman, J.K.: Theory of integrative levels. The British Journal for the Philosophy of Science 5, 59–66 (1954)

    Article  Google Scholar 

  12. Flower, L.: Problem-Solving Strategies for Writing. Harcourt Brace Jovabovich, Inc., New York (1981)

    Google Scholar 

  13. Flower, L.S., Hayes, J.R.: Problem-solving strategies and the writing process. College English 39, 449–461 (1977)

    Article  Google Scholar 

  14. Foster, C.L.: Algorithms, Abstraction and Implementation: Levels of Detail in Cognitive Science. Academic Press, London (1992)

    Google Scholar 

  15. Frank, S.D.: Remember Everything You Read. Times Books, New York (1990)

    Google Scholar 

  16. Friske, M.: Teaching proofs: a lesson from software engineering. American Mathematical Monthly 92, 142–144 (1995)

    Article  MathSciNet  Google Scholar 

  17. Gray, W., Rizzo, N.D. (eds.): Unity Through Diversity, I & II. Gordon and Breach Science Publishers, New York (1973)

    Google Scholar 

  18. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt and Company, New York (2004)

    Google Scholar 

  19. Hobbs, J.R.: Granularity. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 432–435 (1985)

    Google Scholar 

  20. Inuiguchi, M., Hirano, S., Tsumoto, S. (eds.): Rough Set Theory and Granular Computing. Springer, Berlin (2003)

    MATH  Google Scholar 

  21. Keet, C.M.: A taxonomy of types of granularity. In: Proceeding of 2006 IEEE International Conference on Granular Computing, pp. 106–111 (2006)

    Google Scholar 

  22. Keet, C.M.: A Formal Theory of Granularity, PhD Thesis, KRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy (2008) (accessed June 8, 2008), http://www.meteck.org/files/AFormalTheoryOfGranularity_CMK08.pdf

  23. Lamport, L.: How to write a proof. American Mathematical Monthly 102, 600–608 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Laszlo, E.: The Systems View of the World: the Natural Philosophy of the New Developments in the Science. George Brasiller, New York (1972)

    Google Scholar 

  25. Ledgard, H.F., Gueras, J.F., Nagin, P.A.: PASCAL with Style: Programming Proverbs. Hayden Book Company, Inc., New Jersey (1979)

    Google Scholar 

  26. Leron, U.: Structuring mathematical proofs. American Mathematical Monthly 90, 174–185 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lin, T.Y., Yao, Y.Y., Zadeh, L.A. (eds.): Data Mining, Rough Sets and Granular Computing. Physica-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  28. Marr, D.: Vision, A Computational Investigation into Human Representation and Processing of Visual Information. W.H. Freeman and Company, San Francisco (1982)

    Google Scholar 

  29. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63, 81–97 (1956)

    Article  Google Scholar 

  30. Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human mind. Simon & Schuster Paperbacks, New York (2006)

    Google Scholar 

  31. Minto, B.: The Pyramid Principle: Logic in Writing and Thinking. Prentice Hall/Financial Times, London (2002)

    Google Scholar 

  32. Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)

    Article  Google Scholar 

  33. Newell, A.: Reflections on the knowledge level. Artificial Intelligence 59, 31–38 (1993)

    Article  MathSciNet  Google Scholar 

  34. Nguyen, S.H., Skowron, A., Stepaniuk, J.: Granular computing: a rough set approach. Computational Intelligence 17, 514–544 (2001)

    Article  MathSciNet  Google Scholar 

  35. Novikoff, A.B.: The concept of integrative levels and biology. Science 101, 209–215 (1945)

    Article  Google Scholar 

  36. Patrides, C.A.: Hierarchy and order. In: Dictionary of the History of Ideas, pp. 434–449. Scribners, New York (1973)

    Google Scholar 

  37. Pattee, H.H.: Unsolved problems and potential applications of hierarchy theory. In: Pattee, H.H. (ed.) Hierarchy Theory, The Challenge of Complex Systems, pp. 129–156. George Braziller, New York (1973)

    Google Scholar 

  38. Pawlak, Z.: Granularity of knowledge, indiscernibility and rough sets. In: Proceedings of 1998 IEEE International Conference on Fuzzy Systems, pp. 106–110 (1998)

    Google Scholar 

  39. Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. Wiley, New York (2008)

    Google Scholar 

  40. Peikoff, L.: Objectivism: the Philosophy of Ayn Rand. Dutton, New York (1991)

    Google Scholar 

  41. Poli, R.: Levels. Axiomathes 9, 197–211 (1998)

    Article  Google Scholar 

  42. Poli, R.: The basic problem of the theory of level of reality. Axiomathes 12, 261–283 (2002)

    Article  Google Scholar 

  43. Posner, M.I. (ed.): Foundations of Cognitive Science. The MIT Press, Cambridge (1989)

    Google Scholar 

  44. Ramberg, B., Gjesdal, K.: Hermeneutics. The Stanford Encyclopedia of Philosophy (accessed June 14, 2005)

    Google Scholar 

  45. Reif, F., Heller, J.: Knowledge structure and problem solving in physics. Educational Psychologist 17, 102–127 (1982)

    Google Scholar 

  46. Salthe, S.N.: Evolving Hierarchical Systems, Their Structure and Representation. Columbia University Press (1985)

    Google Scholar 

  47. Simon, H.A.: The organization of complex systems. In: Pattee, H.H. (ed.) Hierarchy Theory, The Challenge of Complex Systems, pp. 1–27. George Braziller, New York (1973)

    Google Scholar 

  48. Simpson, S.G.: What is foundations of mathematics? (accessed November 21, 1996), http://www.math.psu.edu/simpson/hierarchy.html

  49. Skyttner, L.: General Systems Theory, Ideas & Applications. World Scientific, Singapore (2001)

    Google Scholar 

  50. Verdier, B.: Hierarchy: a short history of a word in western thought. In: Pumain, D. (ed.) Hierarchy in Natural and Social Sciences, pp. 13–37. Springer, The Netherlands (2006)

    Chapter  Google Scholar 

  51. von Bertalanffy, L.: An outline of general system theory. The British Journal for the Philosophy of Science 1, 134–165 (1950)

    Article  MathSciNet  Google Scholar 

  52. Wilson, T.D.: Philosophical foundations and research relevance: issues for information research. Journal of Information Science 29, 445–452 (2003)

    Article  Google Scholar 

  53. Yao, J.T.: A ten-year review of granular computing. In: Proceedings of 2007 IEEE International Conference on Granular Computing, pp. 734–739 (2007)

    Google Scholar 

  54. Yao, Y.Y.: Granular computing: basic issues and possible solution. In: Proceedings of the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)

    Google Scholar 

  55. Yao, Y.Y.: A partition model of granular computing. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 232–253. Springer, Heidelberg (2004)

    Google Scholar 

  56. Yao, Y.Y.: Granular computing. Computer Science (Ji Suan Ji Ke Xue) 31, 1–5 (2004b)

    Google Scholar 

  57. Yao, Y.Y.: Perspectives of granular computing. In: Proceedings of 2005 IEEE International Conference on Granular Computing, pp. 85–90 (2005)

    Google Scholar 

  58. Yao, Y.Y.: Three perspectives of granular computing. Journal of Nanchang Institute of Technology 25, 16–21 (2006)

    Google Scholar 

  59. Yao, Y.Y.: The art of granular computing. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 101–112. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  60. Yao, Y.Y.: Structured writing with granular computing strategies. In: Proceedings of 2007 IEEE International Conference on Granular Computing, pp. 72–77 (2007b)

    Google Scholar 

  61. Yao, Y.Y.: The rise of granular computing. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition) 20, 299–308 (2008)

    Google Scholar 

  62. Young, G.L.: Hierarchy and central place: some questions of more general theory. Geografiska Annaler, Series B, Human Geography 60, 71–78 (1978)

    Article  Google Scholar 

  63. Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90, 111–127 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  64. Zhang, L., Zhang, B.: Theory and Application of Problem Solving – Theory and Application of Granular Computing in Quotient Spaces, 2nd edn. Tsinghua University Press, Beijing (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, Y. (2009). Integrative Levels of Granularity. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics