Artificial Dendritic Cells: Multi-faceted Perspectives | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

Dendritic cells are the crime scene investigators of the human immune system. Their function is to correlate potentially anomalous invading entities with observed damage to the body. The detection of such invaders by dendritic cells results in the activation of the adaptive immune system, eventually leading to the removal of the invader from the host body. This mechanism has provided inspiration for the development of a novel bio-inspired algorithm, the Dendritic Cell Algorithm. This algorithm processes information at multiple levels of resolution, resulting in the creation of information granules of variable structure. In this chapter we examine the multi-faceted nature of immunology and how research in this field has shaped the function of the resulting Dendritic Cell Algorithm. A brief overview of the algorithm is given in combination with the details of the processes used for its development. The chapter is concluded with a discussion of the parallels between our understanding of the human immune system and how such knowledge influences the design of artificial immune systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aickelin, U., et al.: Danger Theory: The link between AIS and IDS. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)

    Google Scholar 

  • Al-Hammadi, Y., Aickelin, U., Greensmith, J.: DCA for detecting bots. In: Proc. of the Congress on Evolutionary Computation (CEC) (2008)

    Google Scholar 

  • Balthrop, J.: RIOT: A responsive system for mitigating computer network epidemics and attacks. Master’s thesis, University of New Mexico (2005)

    Google Scholar 

  • Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Springer International Series in Engineering and Computer Science, vol. 717 (2003)

    Google Scholar 

  • Cohen, I.R.: Real and artificial immune systems: computing the state of the body. Nature Reviews in Immunology 7(7), 569–574 (2007)

    Article  Google Scholar 

  • de Castro, L.N., Von Zuben, F.: Learning and Optimization Using the Clonal Selection Principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6(3), 239–251 (2002)

    Google Scholar 

  • Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 202–209. IEEE Computer Society, Los Alamitos (1994)

    Google Scholar 

  • Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the Dendritic Cell Algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, School of Computer Science, University Of Nottingham (2007)

    Google Scholar 

  • Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Proc. of the 7th International Conference on Artificial Immune Systems, ICARIS (to appear, 2008)

    Google Scholar 

  • Greensmith, J., Aickelin, U., Feyereisl, J.: The DCA-SOMe comparison: A comparative study between two biologically-inspired algorithms. Evolutionary Intelligence: Special Issue on Artificial Immune Systems 1(2), 85–112 (2008)

    Google Scholar 

  • Gu, F., Greensmith, J., Aickelin, U.: Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows. In: Proc. of the 7th International Conference on Artificial Immune Systems (to appear, 2008)

    Google Scholar 

  • Hofmeyr, S.: An immunological model of distributed detection and its application to computer security. PhD thesis, University Of New Mexico (1999)

    Google Scholar 

  • Janeway, C.: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symposium on Quant Biology 1, 1–13 (1989)

    Google Scholar 

  • Kim, J., Bentley, P.: Evaluating negative selection in an artificial immune system for network intrusion detection. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO), pp. 1330–1337 (July 2001)

    Google Scholar 

  • Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger is ubiquitous: Detecting malicious activities in sensor networks using the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 390–403. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Lutz, M., Schuler, G.: Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends in Immunology 23(9), 991–1045 (2002)

    Article  Google Scholar 

  • Matzinger, P.: Tolerance, danger and the extended family. Annual Reviews in Immunology 12, 991–1045 (1994)

    Google Scholar 

  • Murphy, K., Travers, P., Walport, M.: Janeway’s Immunobiology, 7th edn. Garland Science (2008)

    Google Scholar 

  • Oates, R., Greensmith, J., Aickelin, U., Garibaldi, J., Kendall, G.: The application of a dendritic cell algorithm to a robotic classifier. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 204–215. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  • Oates, R., Kendall, G., Greensmith, J.: Frequency analysis for dendritic cell population tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on Artificial Immune Systems (2008)

    Google Scholar 

  • Silverstein, A.: Paul Ehrlich, archives and the history of immunology. Nature Immunology 6(7), 639–639 (2005)

    Article  Google Scholar 

  • Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection appropriate for anomaly detection? In: Proc. of Genetic and Evolutionary Computation Conference (GECCO), pp. 321–328 (2005)

    Google Scholar 

  • Stibor, T., Timmis, J., Eckert, C.: On permutation masks in hamming negative selection. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 122–135. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Approach. Springer, London (2002)

    MATH  Google Scholar 

  • Twycross, J., Aickelin, U.: libtissue - implementing innate immunity. In: Proc. of the Congress on Evolutionary Computation (CEC), pp. 499–506 (2006)

    Google Scholar 

  • Zhou, J., Dasgupta, D.: Applicability issues of the real-valued negative selection algorithms. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 111–118 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Greensmith, J., Aickelin, U. (2009). Artificial Dendritic Cells: Multi-faceted Perspectives. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics