Gene Interactions Sub-networks and Soft Computing | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

  • 533 Accesses

Abstract

Analysis of gene interaction networks is crucial for understanding fundamental cellular processes involving growth, development, hormone secretion and cellular communication.A gene interaction network comprises of proteins and genes binding to each other, and acting as a complex input-output system for controlling cellular functions. A small set of genes take part in a cellular process of interest, while a single gene may be involved in more than one cellular process at the same time. Soft computing is a consortium of methodologies that works synergistically and provides flexible information processing capability for handling real life ambiguous situations. The tools include fuzzy sets, evolutionary computing, neurocomputing, and their hybridizations. We discuss some existing literature pertaining to the use of soft computing and other classical methodologies in the reverse engineering of gene interaction networks. As a case study we describe here a soft computing based strategy for biclustering and the use of rank correlation, for extracting rank correlated gene interaction sub-networks from microarray data. Experimental results on time series gene expression data from Yeast were biologically validated based on standard databases and information from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mitra, S., Pedrycz, W. (eds.): Special Issue on Bioinformatics. Pattern Recognition 39 (2006)

    Google Scholar 

  2. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  3. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

  4. Gasch, A.P., Eisen, M.B.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3:research 0059.1-0059.22 (2002)

    Google Scholar 

  5. Ji, L., Tan, K.L.: Identifying time-lagged gene clusters using gene expression data. Bioinformatics 21, 509–516 (2005)

    Article  Google Scholar 

  6. Madeira, S.C., Oliveira, A.L.: A Linear Time Biclustering Algorithm for Time Series Gene Expression Data. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 39–52. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)

    Google Scholar 

  8. Karp, P.D., Ouzounis, C.A., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren, D., Tsoka, S., Darzentas, N., Kunin, V., Lopez-Bigas, N.: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 19, 6083–6089 (2005)

    Article  Google Scholar 

  9. Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., Karp, P.D.: EcoCyc: A comprehensive database resource for Escherichia coli. Nucleic Acids Research 33, 334–337 (2005)

    Article  Google Scholar 

  10. Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-Peredo, E., Sanchez-Solano, F., Santos-Zavaleta, A., Martinez-Flores, I., Jimenez-Jacinto, V., Bonavides-Martinez, C., Segura-Salazar, J., Martinez-Antonio, A., Collado-Vides, J.: RegulonDB (version 5.0): Escherichia coli K-12 transcriptional regulatory network, operon organization, and growth conditions. Nucleic Acids Research 34, D394–D397 (2006)

    Article  Google Scholar 

  11. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology, the gene ontology consortium. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  12. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto En-cyclopedia of Genes Genomes. Nucleic Acids Research 27, 29–34 (1999)

    Article  Google Scholar 

  13. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.-L.: The large scale organization of metabolic networks. Nature 407, 651–654 (2000)

    Article  Google Scholar 

  14. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)

    Article  Google Scholar 

  15. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

    Article  Google Scholar 

  16. Thieffry, D., Huerta, A.M., P´erez-Rueda, E., Collado-Vides, J.: From specific gene regulation to genomic networks: A global analysis of transcriptional regulation in Escherichia coli. BioEssays 20, 433–440 (1998)

    Article  Google Scholar 

  17. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  18. Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19, 2271–2282 (2003)

    Article  Google Scholar 

  19. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Proceedings of Pacific Symposium on Biocomputing, pp. 17–28 (1999)

    Google Scholar 

  20. Liang, S., Somogyi, F.S.: Somogyi Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Proceedings of Pacific Symposium on Biocomputing, pp. 18–29 (1998)

    Google Scholar 

  21. Martin, S., Zhang, Z., Martino, A., Faulon, J.-L.: Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23, 866–874 (2007)

    Article  Google Scholar 

  22. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)

    Article  Google Scholar 

  23. Gardner, T.S., di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 4, 102–105 (2003)

    Article  Google Scholar 

  24. de Jong, H., Page, M.: Search for steady states of piecewise-linear differential equation models of genetic regulatory networks. IEEE Transactions on Computational Biology and Bioinformatics 5, 208–222 (2008)

    Article  Google Scholar 

  25. Zou, M., Conzen, S.D.: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71–79 (2005)

    Article  Google Scholar 

  26. Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004)

    Article  Google Scholar 

  27. Kwon, A.T., Hoos, H.H., Ng, R.: Inference of transcriptional regulation relationships from gene expression data. Bioinformatics 19, 905–912 (2003)

    Article  Google Scholar 

  28. Segal, E., Taskar, B., Gasch, A., Friedman, N., Koller, D.: Rich probabilistic models for gene expression. Bioinformatics 17, S243–S252 (2001)

    Google Scholar 

  29. Bar-Joseph, Z., Gerber, G.K., Lee, T.I., Rinaldi, N.J., Yoo, J.Y., Robert, F., Gordon, D.B.: E Fraenkel, Jaahhola TS, Young RA, Gifford DK Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003)

    Article  Google Scholar 

  30. Cheng, Y., Church, G.M.: Biclustering of gene expression data. In: Proceedings of ISMB 2000, pp. 93–103 (2000)

    Google Scholar 

  31. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. IEEE Transactions on Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  32. Reiss, D.J., Baliga, N.S., Bonneau, R.: Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7, 280 (2006)

    Article  Google Scholar 

  33. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37, 77–84 (1994)

    Article  Google Scholar 

  34. Mitra, S., Acharya, T.: Data Mining: Multimedia, Soft Computing, and Bioinformatics. John Wiley, New York (2003)

    Google Scholar 

  35. Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley, England (2008)

    Google Scholar 

  36. Bargiela, A., Pedrycz, W.: Toward a Theory of Granular Computing for Human-Centered Information Processing. IEEE Transactions on Fuzzy Systems 16, 320–330 (2008)

    Article  Google Scholar 

  37. Takahashi, H., Tomida, S., Kobayashi, T., Honda, H.: Inference of common genetic network using fuzzy adaptive resonance theory associated matrix method. Journal of Bioscience and Bioengineering 96, 154–160 (2003)

    Google Scholar 

  38. Woolf, P.J., Wang, Y.: A fuzzy logic approach to analyzing gene expression data. Physiol Genomics 3, 9–15 (2000)

    Google Scholar 

  39. Du, P., Gong, J., Wurtele, E.S., Dickerson, J.A.: Modeling gene expression networks using fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 35, 1351–1359 (2005)

    Article  Google Scholar 

  40. Kim, S., Dougherty, E.R., Chen, Y., Sivakumar, K., Meltzer, P., Trent, J.M., Bittner, M.: Multivariate Measurement of Gene Expression Relationships. Genomics 67, 201–209 (2000)

    Article  Google Scholar 

  41. Huang, J., Shimizu, H., Shioya, S.: Clustering gene expression pattern and extracting relationship in gene network based on artificial neural networks. J Biosci. Bioeng. 96, 421–428 (2003)

    Google Scholar 

  42. Ressom, H., Wang, D., Natarajan, P.: Clustering gene expression data using adaptive double self-organizing map. Physiol. Genomics 14, 35–46 (2003)

    Google Scholar 

  43. Toronen, P., Kolehmainen, M., Wong, G., Castren, E.: Analysis of gene expression data using self-organizing maps. FEBS Lett. 451, 142–146 (1999)

    Article  Google Scholar 

  44. Vohradsky, J.: Neural network model of gene expression. FASEB Journal 15, 846–854 (2001)

    Article  Google Scholar 

  45. Weaver, D.C., Workman, C.T., Stormo, G.D.: Modelling regulatory networks with weight matrices. In: Proceedings of Pacific Symposium on Biocomputing, pp. 112–123 (1999)

    Google Scholar 

  46. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 19, 643–650 (2003)

    Article  Google Scholar 

  47. Xiong, M., Li, J., Fang, X.: Identification of genetic networks. Genetics 166, 1037–1052 (2004)

    Article  Google Scholar 

  48. Iba, H., Mimura, A.: Inference of a gene regulatory network by means of interactive evolutionary computing. Information Science 145, 225–236 (2002)

    Article  Google Scholar 

  49. Keedwell, E., Narayanan, A.: Discovering gene networks with a neural-genetic hybrid. IEEE Transactions on Computational Biology and Bioinformatics 2, 231–242 (2005)

    Article  Google Scholar 

  50. Kasabov, N.K.: Knowledge-based neural networks for gene expression data analysis modelling and profile discovery. Biosilico 2, 253–261 (2004)

    Google Scholar 

  51. Cotik, V., Zaliz, R.R., Zwir, I.: A hybrid promoter analysis methodology for prokaryotic genomes. Fuzzy Sets and Systems 152, 83–102 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  52. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Molecular Systems Biology 3, 1–10 (2007)

    Google Scholar 

  53. Zhang, Y., Zha, H., Chu, C.H.: A time-series biclustering algorithm for revealing co-regulated genes. In: Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC 2005), pp. 1–6 (2005)

    Google Scholar 

  54. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)

    Article  MATH  Google Scholar 

  55. Balasubramaniyan, R., Hllermeier, E., Weskamp, N., Kamper, J.: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069–1077 (2005)

    Article  Google Scholar 

  56. Das, R., Mitra, S., Banka, H., Mukhopadhyay, S.: Evolutionary biclustering with correlation for gene interaction networks. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 416–424. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  57. Davies, G.R., Yoder, D.: Business Statistics. John Wiley & Sons, Inc., London (1937)

    Google Scholar 

  58. Cho, R.J., Campbell, M.J., Winzeler, L.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.: A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)

    Article  Google Scholar 

  59. Bo, T.H., Dysvik, B., Jonassen, I.: Lsimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Research 32, 1–8 (2004)

    Article  Google Scholar 

  60. Qian, J., Lin, J., Luscombe, N.M., Yu, H., Gerstein, M.: Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics 19, 1917–1926 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, R., Mitra, S. (2009). Gene Interactions Sub-networks and Soft Computing. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics