Abstract
To classify biomedical data is to find a mapping from patterns to a set of classes (e.g., disease states). Patterns are represented by features (e.g., metabolite concentrations) and class labels are assigned using a reference test (e.g., an expert’s analysis of “normality”). This process often suffers from three significant challenges: voluminous features; pattern paucity; and reference test imprecision. Three computational intelligence based techniques, which exploit the notion of information granulation, are presented to address these challenges. Fuzzy quantile encoding replaces a feature with its membership values in a fuzzy set collection describing the feature’s interquantile range. Class label adjustment compensates for reference test imprecision by adjusting design set class labels using a fuzzified similarity measure based on robust measures of class location and dispersion. Stochastic feature selection is a strategy where instances of classifiers are presented with feature regions sampled from an ad hoc cumulative distribution function. These techniques as well as their application to several classification problems in the biomedical domain will be discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65, 1803–1832 (1994)
Cestnik, B., Kononenko, I., Bratko, I.: ASSISTANT 86: A knowledge elicitation tool for sophisticated users. In: Bratko, I., Lavrac, N. (eds.) Progress in Machine Learning. Sigma Press, Wilmslow (1987)
Cheng, B., Titterington, D.M.: Neural networks: a review from a statistical perspective. Stat. Sci. 9, 2–54 (1994)
Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific, New Jersey (1996)
Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)
Demko, A.B., Pizzi, N.J., Somorjai, R.L.: Scopira – A system for the analysis of biomedical data. In: Proc. IEEE Can. Conf. Electr. Comput. Eng., Winnipeg, Canada, May 12–15, 2002, pp. 1093–1098 (2002)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, New York (2000)
Everitt, B.S.: Moments of the statistics kappa and weighted kappa. Br. J. Math. Stat. Psychol. 21, 97–103 (1968)
Fleiss, J.L.: Measuring agreement between judges on the presence or absence of a trait. Biom. 31, 651–659 (1975)
Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy. Wiley & Sons, New York (1998)
Grabish, M., Murofushi, T., Sugeno, M.: Fuzzy measure of fuzzy events defined by fuzzy integrals. Fuzzy Sets Syst. 50, 293–313 (1992)
Hong, Z.Q., Yang, J.Y.: Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit. 24, 317–324 (1991)
Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)
Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Englewood Cliffs (1988)
Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16, 121–128 (1999)
Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif. Intell. Med. 23, 149–169 (2001)
Landis, J.R., Koch, G.G.: The measurements of observer agreement for categorical data. Biom. 33, 159–174 (1997)
Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Min. Knowl. Discovery 6, 393–423 (2002)
Mesiar, R., Mesiarová, A.: Fuzzy Integrals—What Are They? Int. J. Intell. Syst. 23, 199–212 (2008)
Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29, 201–227 (1989)
Nosek-Cenkowska, B., Cheang, M.S., Pizzi, N.J., Israels, E.D., Gerrard, J.M.: Bleeding/bruising symptomatology in children with and without bleeding disorders. Thromb. Haemost. 65, 237–241 (1991)
Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)
Pavia, D.L., Lampman, G.M., Kriz, G.S.: Introduction to Spectroscopy. Harcourt Brace College, Fort Worth (1996)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007)
Pedrycz, W.: Granular Computing: The Emerging Paradigm. J. Uncertain Syst. 1, 38–61 (2007)
Pedrycz, W.: Granular Computing: An Emerging Paradigm. Springer, Heidelberg (2001)
Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley & Sons, New York (2007)
Pizzi, N.J.: Biomedical data analysis using dispersion-adjusted fuzzy quantile encoding. In: Proc. Annu Meet North Am. Fuzzy Inf. Process Soc., New York, USA, #50010 (6 pages), May 19–22 (2008)
Pizzi, N.J.: Classification of biomedical spectra using stochastic feature selection. Neural Netw. World 15, 257–268 (2005)
Pizzi, N.J.: Bleeding predisposition assessments in tonsillectomy/adenoidectomy patients using fuzzy interquartile encoded neural networks. Artif. Intell. Med. 21, 65–90 (2001)
Pizzi, N.J.: Fuzzy preprocessing of gold standards as applied to biomedical spectra classification. Artif. Intell. Med. 16, 171–182 (1999)
Pizzi, N.J., Pedrycz, W.: An analysis of potentially imprecise class labels using a fuzzy similarity measure. In: Proc. World Congr. Comput. Intell., Hong Kong, June 1–6, pp. 667–672 (2008)
Pizzi, N.J., Pedrycz, W.: Classification of magnetic resonance spectra using parallel randomized feature selection. In: Proc. Int. Jt. Conf. Neural Netw., Budapest, Hungary, July 25–29, 2004, pp. 2455–2460 (2004)
Pizzi, N., Somorjai, R.L.: Fuzzy encoding as a preprocessing method for artificial neural networks. In: Proc. World Congr. Neural Netw., San Diego, USA, June 5-9, 1994, pp. 643–648 (1994)
Pizzi, N.J., Wiebe, C., Pedrycz, W.: Biomedical spectral classification using stochastic feature selection and fuzzy aggregation. In: Proc. Ann. Meet North Am. Fuzzy Inf. Process Soc., San Diego, USA, June 24–27, 2007, pp. 360–365 (2007)
Pizzi, N.J., Alexiuk, M.D., Pedrycz, W.: Classification of biomedical spectra using fuzzy interquartile encoding and stochastic feature selection. In: Proc. IEEE Symp. Ser. Comput. Intell. Data Min., Honolulu, USA, June 1–6, pp. 668–673 (2007)
Pizzi, N., Choo, L.-P., Mansfield, J., Jackson, M., Halliday, W.C., Mantsch, H.H., Somorjai, R.L.: Neural network classification of infrared spectra of control and Alzheimer’s diseased tissue. Artif. Intell. Med. 7, 67–79 (1995)
Ripley, B.D.: Neural networks and related methods for classification. J. Royal Stat. Soc. [B] 56, 409–456 (1994)
Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)
Seber, G.: Multivariate Observations. Wiley & Sons, New York (1984)
Snir, M., Gropp, W.: MPI: The Complete Reference. MIT Press, Cambridge (1998)
Somorjai, R.L., Dolenko, B., Nikulin, A.K., Pizzi, N., Scarth, G., Zhilkin, P., Halliday, W., Fewer, D., Hill, N., Ross, I., West, M., Smith, I.C.P., Donnelly, S.M., Kuesel, A.C., Briere, K.M.: Classification of 1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy. J. Magn. Reson. Imaging 6, 437–444 (1996)
Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)
Sugeno, A.: Fuzzy measures and fuzzy integrals: A survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 90–102. North Holland, Amsterdam (1977)
Sugeno, A.: Theory of fuzzy integral and its applications. PhD Thesis, Tokyo Institute of Technology (1972)
Tahani, H., Keller, J.M.: Information fusion in computer vision using the fuzzy integral. IEEE Trans. Syst. Man Cybern. 20, 733–741 (1990)
Vapnik, V.: Statistical Learning Theory. Wiley & Sons, New York (1998)
Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems. Morgan Kaufmann, San Mateo (1991)
Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Mateo (2005)
Zadeh, L.A.: Fuzzy logic = Computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Pizzi, N.J. (2009). Information Processing in Biomedical Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)