Information Processing in Biomedical Applications | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 182))

Abstract

To classify biomedical data is to find a mapping from patterns to a set of classes (e.g., disease states). Patterns are represented by features (e.g., metabolite concentrations) and class labels are assigned using a reference test (e.g., an expert’s analysis of “normality”). This process often suffers from three significant challenges: voluminous features; pattern paucity; and reference test imprecision. Three computational intelligence based techniques, which exploit the notion of information granulation, are presented to address these challenges. Fuzzy quantile encoding replaces a feature with its membership values in a fuzzy set collection describing the feature’s interquantile range. Class label adjustment compensates for reference test imprecision by adjusting design set class labels using a fuzzified similarity measure based on robust measures of class location and dispersion. Stochastic feature selection is a strategy where instances of classifiers are presented with feature regions sampled from an ad hoc cumulative distribution function. These techniques as well as their application to several classification problems in the biomedical domain will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop, C.M.: Neural networks and their applications. Rev. Sci. Instrum. 65, 1803–1832 (1994)

    Article  Google Scholar 

  2. Cestnik, B., Kononenko, I., Bratko, I.: ASSISTANT 86: A knowledge elicitation tool for sophisticated users. In: Bratko, I., Lavrac, N. (eds.) Progress in Machine Learning. Sigma Press, Wilmslow (1987)

    Google Scholar 

  3. Cheng, B., Titterington, D.M.: Neural networks: a review from a statistical perspective. Stat. Sci. 9, 2–54 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chi, Z., Yan, H., Pham, T.: Fuzzy Algorithms: With Applications to Image Processing and Pattern Recognition. World Scientific, New Jersey (1996)

    MATH  Google Scholar 

  5. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)

    MathSciNet  Google Scholar 

  6. Demko, A.B., Pizzi, N.J., Somorjai, R.L.: Scopira – A system for the analysis of biomedical data. In: Proc. IEEE Can. Conf. Electr. Comput. Eng., Winnipeg, Canada, May 12–15, 2002, pp. 1093–1098 (2002)

    Google Scholar 

  7. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, New York (2000)

    Google Scholar 

  8. Everitt, B.S.: Moments of the statistics kappa and weighted kappa. Br. J. Math. Stat. Psychol. 21, 97–103 (1968)

    Google Scholar 

  9. Fleiss, J.L.: Measuring agreement between judges on the presence or absence of a trait. Biom. 31, 651–659 (1975)

    MathSciNet  Google Scholar 

  10. Friebolin, H.: Basic One- and Two-Dimensional NMR Spectroscopy. Wiley & Sons, New York (1998)

    Google Scholar 

  11. Grabish, M., Murofushi, T., Sugeno, M.: Fuzzy measure of fuzzy events defined by fuzzy integrals. Fuzzy Sets Syst. 50, 293–313 (1992)

    Article  Google Scholar 

  12. Hong, Z.Q., Yang, J.Y.: Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognit. 24, 317–324 (1991)

    Article  MathSciNet  Google Scholar 

  13. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  15. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16, 121–128 (1999)

    Article  Google Scholar 

  16. Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M., Goodenday, L.S.: Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif. Intell. Med. 23, 149–169 (2001)

    Article  Google Scholar 

  17. Landis, J.R., Koch, G.G.: The measurements of observer agreement for categorical data. Biom. 33, 159–174 (1997)

    MathSciNet  Google Scholar 

  18. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Min. Knowl. Discovery 6, 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  19. Mesiar, R., Mesiarová, A.: Fuzzy Integrals—What Are They? Int. J. Intell. Syst. 23, 199–212 (2008)

    Article  MATH  Google Scholar 

  20. Murofushi, T., Sugeno, M.: An interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets Syst. 29, 201–227 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nosek-Cenkowska, B., Cheang, M.S., Pizzi, N.J., Israels, E.D., Gerrard, J.M.: Bleeding/bruising symptomatology in children with and without bleeding disorders. Thromb. Haemost. 65, 237–241 (1991)

    Google Scholar 

  22. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pavia, D.L., Lampman, G.M., Kriz, G.S.: Introduction to Spectroscopy. Harcourt Brace College, Fort Worth (1996)

    Google Scholar 

  24. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pedrycz, W.: Granular Computing: The Emerging Paradigm. J. Uncertain Syst. 1, 38–61 (2007)

    Google Scholar 

  26. Pedrycz, W.: Granular Computing: An Emerging Paradigm. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  27. Pedrycz, W., Gomide, F.: Fuzzy Systems Engineering: Toward Human-Centric Computing. Wiley & Sons, New York (2007)

    Google Scholar 

  28. Pizzi, N.J.: Biomedical data analysis using dispersion-adjusted fuzzy quantile encoding. In: Proc. Annu Meet North Am. Fuzzy Inf. Process Soc., New York, USA, #50010 (6 pages), May 19–22 (2008)

    Google Scholar 

  29. Pizzi, N.J.: Classification of biomedical spectra using stochastic feature selection. Neural Netw. World 15, 257–268 (2005)

    Google Scholar 

  30. Pizzi, N.J.: Bleeding predisposition assessments in tonsillectomy/adenoidectomy patients using fuzzy interquartile encoded neural networks. Artif. Intell. Med. 21, 65–90 (2001)

    Article  Google Scholar 

  31. Pizzi, N.J.: Fuzzy preprocessing of gold standards as applied to biomedical spectra classification. Artif. Intell. Med. 16, 171–182 (1999)

    Article  Google Scholar 

  32. Pizzi, N.J., Pedrycz, W.: An analysis of potentially imprecise class labels using a fuzzy similarity measure. In: Proc. World Congr. Comput. Intell., Hong Kong, June 1–6, pp. 667–672 (2008)

    Google Scholar 

  33. Pizzi, N.J., Pedrycz, W.: Classification of magnetic resonance spectra using parallel randomized feature selection. In: Proc. Int. Jt. Conf. Neural Netw., Budapest, Hungary, July 25–29, 2004, pp. 2455–2460 (2004)

    Google Scholar 

  34. Pizzi, N., Somorjai, R.L.: Fuzzy encoding as a preprocessing method for artificial neural networks. In: Proc. World Congr. Neural Netw., San Diego, USA, June 5-9, 1994, pp. 643–648 (1994)

    Google Scholar 

  35. Pizzi, N.J., Wiebe, C., Pedrycz, W.: Biomedical spectral classification using stochastic feature selection and fuzzy aggregation. In: Proc. Ann. Meet North Am. Fuzzy Inf. Process Soc., San Diego, USA, June 24–27, 2007, pp. 360–365 (2007)

    Google Scholar 

  36. Pizzi, N.J., Alexiuk, M.D., Pedrycz, W.: Classification of biomedical spectra using fuzzy interquartile encoding and stochastic feature selection. In: Proc. IEEE Symp. Ser. Comput. Intell. Data Min., Honolulu, USA, June 1–6, pp. 668–673 (2007)

    Google Scholar 

  37. Pizzi, N., Choo, L.-P., Mansfield, J., Jackson, M., Halliday, W.C., Mantsch, H.H., Somorjai, R.L.: Neural network classification of infrared spectra of control and Alzheimer’s diseased tissue. Artif. Intell. Med. 7, 67–79 (1995)

    Article  Google Scholar 

  38. Ripley, B.D.: Neural networks and related methods for classification. J. Royal Stat. Soc. [B] 56, 409–456 (1994)

    MATH  MathSciNet  Google Scholar 

  39. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  40. Seber, G.: Multivariate Observations. Wiley & Sons, New York (1984)

    MATH  Google Scholar 

  41. Snir, M., Gropp, W.: MPI: The Complete Reference. MIT Press, Cambridge (1998)

    Google Scholar 

  42. Somorjai, R.L., Dolenko, B., Nikulin, A.K., Pizzi, N., Scarth, G., Zhilkin, P., Halliday, W., Fewer, D., Hill, N., Ross, I., West, M., Smith, I.C.P., Donnelly, S.M., Kuesel, A.C., Briere, K.M.: Classification of 1H MR spectra of human brain neoplasms: The influence of preprocessing and computerized consensus diagnosis on classification accuracy. J. Magn. Reson. Imaging 6, 437–444 (1996)

    Article  Google Scholar 

  43. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3, 109–118 (1990)

    Article  Google Scholar 

  44. Sugeno, A.: Fuzzy measures and fuzzy integrals: A survey. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 90–102. North Holland, Amsterdam (1977)

    Google Scholar 

  45. Sugeno, A.: Theory of fuzzy integral and its applications. PhD Thesis, Tokyo Institute of Technology (1972)

    Google Scholar 

  46. Tahani, H., Keller, J.M.: Information fusion in computer vision using the fuzzy integral. IEEE Trans. Syst. Man Cybern. 20, 733–741 (1990)

    Article  Google Scholar 

  47. Vapnik, V.: Statistical Learning Theory. Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  48. Weiss, S.M., Kulikowski, C.A.: Computer Systems that Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems. Morgan Kaufmann, San Mateo (1991)

    Google Scholar 

  49. Witten, I.H., Eibe, F.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Mateo (2005)

    MATH  Google Scholar 

  50. Zadeh, L.A.: Fuzzy logic = Computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)

    Article  Google Scholar 

  51. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. 3, 28–44 (1973)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pizzi, N.J. (2009). Information Processing in Biomedical Applications. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92916-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92915-4

  • Online ISBN: 978-3-540-92916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics