Abstract
In ubiquitous computing, users are expected to continuously interact with computing devices, to suggest strategies and hypotheses, to pass over new facts from domain knowledge, to explain untypical cases in dialogs with the devices, etc. These devices therefore need to, at least in an approximate sense, understand the compound, vague concepts used by humans. We discuss current results and research directions on the approximation of compound vague concepts, which are based on rough-granular computing. In particular, we use hierarchical methods for the approximation of domain ontologies of vague concepts. We also discuss an extension of the proposed approach for approximate reasoning about interactive computations performed on complex granules by systems of agents in dynamically changing environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, pp. 37–46. ACM Press, New York (2001)
Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Dordrecht (2003)
Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley and Sons Ltd, Chichester (1978)
Barwise, J., Seligman, J.: Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)
Bazan, J.: Rough sets and granular computing in behavioral pattern identification and planning. In: Pedrycz, et al. (eds.) [39], pp. 777–800.
Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Automatic planning of treatment of infants with respiratory failure through rough set modeling. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., Słowiński, R. (eds.) RSCTC 2006. LNCS, vol. 4259, pp. 418–427. Springer, Heidelberg (2006)
Bazan, J., Kruczek, P., Bazan-Socha, S., Skowron, A., Pietrzyk, J.J.: Risk pattern identification in the treatment of infants with respiratory failure through rough set modeling. In: Proceedings of Information Processing and Management under Uncertainty in Knowledge-Based Systems (IPMU 2006), Paris, France, July 2-7, 2006, vol. (3), pp. 2650–2657. Editions E.D.K. (2006)
Bazan, J., Peters, J.F., Skowron, A.: Behavioral pattern identification through rough set modelling. In: Ślęzak, D., Yao, J., Peters, J.F., Ziarko, W.P., Hu, X. (eds.) RSFDGrC 2005. LNCS, vol. 3642, pp. 688–697. Springer, Heidelberg (2005)
Bazan, J., Skowron, A.: Classifiers based on approximate reasoning schemes. In: Dunin-Kȩplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring, Security, and Rescue Techniques in Multiagent Systems. Advances in Soft Computing, pp. 191–202. Springer, Heidelberg (2005)
Bazan, J.G., Skowron, A., Świniarski, R.W.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–62. Springer, Heidelberg (2006)
Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766. Springer, Heidelberg (2003)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. SIGMOD Rec. 29(2), 93–104 (2000), http://portal.acm.org/citation.cfm?id=335191.335388
Dietterich, T.G.: Hierarchical reinforcement learning with the MAXQ value function decomposition. Artificial Intelligence 13, 227–303 (2000)
Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques: A Rough Set Approach. Studies in Fuzziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)
Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, New York (2003)
Foster, I.: Service-oriented science. science 308, 814–817 (2005)
Gärdenfors, P.: The Geometry of Thought. MIT Press, Cambridge (2000)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Morgan Kaufmann, San Francisco (2004)
Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004), http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
Jankowski, A., Peters, J., Skowron, A., Stepaniuk, J.: Optimization in discovery of compound granules. Fundamenta Informaticae 85(1-4), 249–265 (2008)
Jankowski, A., Skowron, A.: A wistech paradigm for intelligent systems. In: Peters, J.F., Skowron, A., Düntsch, I., Grzymała-Busse, J.W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 94–132. Springer, Heidelberg (2007)
Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)
Jiang, F., Sui, Y., Cao, C.: Outlier detection using rough set theory. In: Slezak, D., Wang, M.D.I., Szczuka, G., Yao, Y. (eds.) 10th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Regina, Canada, pp. 79–87 (2005)
Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey. Journal of Artificial Intelligence Research 4, 227–303 (1996)
Kleinberg, J., Papadimitriou, C., Raghavan, P.: A microeconomic view of data mining. Data Mining and Knowledge Discovery 2, 311–324 (1998)
Knorr, E.M.: Outliers and data mining: Finding exceptions in data. Ph.D. thesis, University of British Columbia (2002)
Knorr, E.M., Ng, R.T.: Finding intensional knowledge of distance-based outliers. In: VLDB 1999: Proceedings of the 25th International Conference on Very Large Data Bases, pp. 211–222. Morgan Kaufmann, San Francisco (1999), http://portal.acm.org/citation.cfm?id=671529
Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-based outliers: Algorithms and applications. The VLDB Journal 8(3), 237–253 (2000)
McGovern, A.: Autonomous Discovery of Temporal Abstractions from Interaction with an Environment. University of Massachusetts, Amherst, MA, PhD thesis (2002)
Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, pp. 1–30. IGI Global, Hershey, PA (submitted, 2008)
Nguyen, S.H., Bazan, J., Skowron, A., Nguyen, H.S.: Layered learning for concept synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)
Nguyen, T.T.: Eliciting domain knowledge in handwritten digit recognition. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 762–767. Springer, Heidelberg (2005)
Nguyen, T.T., Paddon, C.P.W.D.J., Nguyen, S.H., Nguyen, H.S.: Learning sunspot classification. Fundamenta Informaticae 72(1-3), 295–309 (2006)
Oliveira, L., Sabourin, R., Bortolozzi, F., Suen, C.: Feature selection using multi-objective genetic algorithms for handwritten digit recognition. In: Proc. 16th International Conference on Pattern Recognition (ICPR 2002), pp. 568–571. IEEE Computer Society Press, Los Alamitos (2002)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies. Springer, Berlin (2004)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rudiments of rough sets; Rough sets: Some extensions; Rough sets and boolean reasoning. Information Sciences 177(1), 3–27, 28–40, 41–73 (2007)
Pedrycz, W. (ed.): Granular Computing. Physica-Verlag, Heidelberg (2001)
Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)
Peters, J.F.: Rough ethology: Towards a biologically-inspired study of collective behavior in intelligent systems with approximation spaces. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 153–174. Springer, Heidelberg (2004)
Peters, J.F.: Near sets: General theory about nearness of objects. Applied Mathematical Sciences 1(53), 2609–2629 (2007)
Peters, J.F.: Discovery of perceptually near information granules. In: J. Yao (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation. Information Science Reference, Hersey, NY (to appear, 2008)
Peters, J.F., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71, 323–349 (2006)
Peters, J.F., Skowron, A., Stepaniuk, J.: Nearness of objects: Extension of approximation space model. Fundamenta Informaticae 79(3-4), 497–512 (2007)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 51, 333–365 (1996)
Polkowski, L., Skowron, A.: Constructing rough mereological granules of classifying rules and classifying algorithms. In: Bouchon-Meunier, B., Gutierrez-Rios, J., Magdalena, L., Yager, R.R., Kacprzyk, J. (eds.) Technologies for Constructing Intelligent Systems I, pp. 57–70. Physica-Verlag (2002)
Rissanen, J.: Minimum-description-length principle. In: Kotz, S., Johnson, N. (eds.) Encyclopedia of Statistical Sciences, pp. 523–527. John Wiley & Sons, New York (1985)
Skowron, A.: Approximate reasoning in distributed environments. In: Zhong, Liu (eds.) [65], pp. 433–474
Skowron, A.: Rough sets in perception-based computing. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 21–29. Springer, Heidelberg (2005)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Skowron, A.: Information granules and rough-neural computing. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words. Cognitive Technologies, pp. 43–84. Springer, Heidelberg (2003)
Skowron, A., Stepaniuk, J.: Rough sets and granular computing: Toward rough-granular computing. In: Pedrycz, et al. (eds.) [39], pp. 425–448.
Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)
Skowron, A., Stepaniuk, J., Peters, J.F.: Rough sets and infomorphisms: Towards approximation of relations in distributed environments. Fundamenta Informaticae 54(2–3), 263–277 (2003)
Skowron, A., Synak, P.: Complex patterns. Fundamenta Informaticae 60(1-4), 351–366 (2004)
Ślȩzak, D.: Approximate entropy reducts. Fundamenta Informaticae 53(3–4), 365–387 (2002)
Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)
Van Wezel, W., Jorna, R., Meystel, A.: Automated Planning: Theory and Practice. John Wiley & Sons, Chichester (2006)
Vapnik, V.: Statisctical Learning Theory. John Wiley & Sons, Chichester (1998)
Vapnik, V.N.: The Nature of Statistical Learning Theory (Information Science and Statistics). Springer, Heidelberg (1999)
Zadeh, L.A.: A new direction in AI - toward a computational theory of perceptions. AI Magazine 22(1), 73–84 (2001)
Zadeh, L.A.: From imprecise to granular probabilities. Fuzzy Sets and Systems 154(3), 370–374 (2005)
Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics and Data Analysis 51, 15–46 (2006)
Zhong, N., Liu, J. (eds.): Intelligent Technologies for Information Analysis. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nguyen, T.T., Skowron, A. (2009). Rough-Granular Computing in Human-Centric Information Processing. In: Bargiela, A., Pedrycz, W. (eds) Human-Centric Information Processing Through Granular Modelling. Studies in Computational Intelligence, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92916-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-540-92916-1_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92915-4
Online ISBN: 978-3-540-92916-1
eBook Packages: EngineeringEngineering (R0)