Language Recognition by Cellular Automata | SpringerLink
Skip to main content

Language Recognition by Cellular Automata

  • Reference work entry
Handbook of Natural Computing

Abstract

Cellular automata (CA) comprise a simple and well-formalized model of massively parallel computation, which is known to be capable of universal computation. Because of their parallel behavior, CA have rich abilities of information processing; however, it is not easy to define their power limitations. A convenient approach to characterizing the computation capacity of CA is to investigate their complexity classes. This chapter discusses the CA complexity classes and their relationships with other models of computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 128699
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 128699
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beyer WT (1969) Recognition of topological invariants by iterative arrays. Technical Report AITR-229, MIT Artificial Intelligence Laboratory, October 1, 1969

    Google Scholar 

  • Bucher W, Čulik K II (1984) On real time and linear time cellular automata. RAIRO Theor Inf Appl 81:307–325

    Google Scholar 

  • Buchholz T, Kutrib M (1998) On time computability of functions in one-way cellular automata. Acta Inf 35(4):329–352

    Article  MathSciNet  MATH  Google Scholar 

  • Buchholz T, Klein A, Kutrib M (2000) Iterative arrays with small time bounds. In: Nielsen M, Rovan B (eds) MFCS, Lecture notes in computer science, vol 1893. Springer, Berlin, Heidelberg, pp 243–252

    Google Scholar 

  • Cervelle J, Formenti E (2009) Algorithmic complexity and cellular automata. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, New York

    Google Scholar 

  • Chang JH, Ibarra OH, Palis MA (1987) Parallel parsing on a one-way array of finite state machines. IEEE Trans Comput C-36(1):64–75

    Article  Google Scholar 

  • Chang JH, Ibarra OH, Vergis A (1988) On the power of one-way communication. J ACM 35(3):697–726

    Article  MathSciNet  Google Scholar 

  • Chang JH, Ibarra OH, Palis MA (1989) Efficient simulations of simple models of parallel computation by time-bounded ATMs and space-bounded TMs. Theor Comput Sci 68(1):19–36

    Article  MathSciNet  MATH  Google Scholar 

  • Choffrut C, Culik K II (1984) On real-time cellular automata and trellis automata. Acta Inf 21(4):393–407

    Article  MathSciNet  MATH  Google Scholar 

  • Cole SN (1969) Real-time computation by n-dimensional iterative arrays of finite-state machine. IEEE Trans Comput 18:349–365

    Article  MATH  Google Scholar 

  • Culik K II (1989) Variations of the firing squad problem and applications. Inf Process Lett 30(3):153–157

    Article  MathSciNet  MATH  Google Scholar 

  • Culik K II, Gruska J, Salomaa A (1984) Systolic trellis automata. I. Int J Comput Math 15(3–4):195–212

    Article  MathSciNet  MATH  Google Scholar 

  • Delacourt M, Poupet V (2007) Real time language recognition on 2D cellular automata: Dealing with non-convex neighborhoods. In: Kucera L, Kucera A (eds) Mathematical foundations of computer science 2007, vol 4708 of Lecture Notes in Computer Science, pp 298–309

    Google Scholar 

  • Delorme M, Mazoyer J (1994) Reconnaisance de langages sur automates cellulaires. Research Report 94–46, LIP, ENS Lyon, France

    Google Scholar 

  • Delorme M, Mazoyer J (2002) Reconnaissance parallèle des langages rationnels sur automates cellulaires plans. [Parallel recognition of rational languages on plane cellular automata] Selected papers in honour of Maurice Nivat. Theor Comput Sci 281(1–2):251–289

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme M, Mazoyer J (2004) Real-time recognition of languages on an two-dimensional Archimedean thread. Theor Comput Sci 322(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  • Dyer CR (1980) One-way bounded cellular automata. Inf Control 44(3):261–281

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer PC (1965) Generation of primes by one-dimensional real-time iterative array. J ACM 12:388–394

    Article  MATH  Google Scholar 

  • Giammarresi D, Restivo A (1997) Two-dimensional languages. In: Rozenberg G, Salomaa A (eds) Handbook of Formal Languages, vol 3. Springer, New York, pp 215–267

    Google Scholar 

  • Goldschlager LM (1982) A universal interconnection pattern for parallel computers. J ACM 29(4):1073–1086

    Article  MathSciNet  MATH  Google Scholar 

  • Hartmanis J, Stearns RE (1965) On the computational complexity of algorithms. Trans Am Math Soc (AMS) 117:285–306

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Jiang T (1987) On one-way cellular arrays. SIAM J Comput 16(6):1135–1154

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Jiang T (1988) Relating the power of cellular arrays to their closure properties. Theor Comput Sci 57(2–3):225–238

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Kim SM (1984) Characterizations and computational complexity of systolic trellis automata. Theor Comput Sci 29(1–2):123–153

    Article  MathSciNet  Google Scholar 

  • Ibarra OH, Palis MA (1987) On efficient simulations of systolic arrays of random-access machines. SIAM J Comput 16(2):367–377

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Palis MA (1988) Two-dimensional iterative arrays: characterizations and applications. Theor Comput Sci 57(1):47–86

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Kim SM, Moran S (1985a) Sequential machine characterizations of trellis and cellular automata and applications. SIAM J Comput 14(2):426–447

    Article  MathSciNet  MATH  Google Scholar 

  • Ibarra OH, Palis MA, Kim SM (1985b) Some results concerning linear iterative (systolic) arrays. J Parallel Distrib Comput 2(2):182–218

    Article  MathSciNet  Google Scholar 

  • Ito A, Inoue K, Takanami I (1989) Deterministic two-dimensional on-line tessellation acceptors are equivalent to two-way two-dimensional alternating finite automata through 180 rotation. Theor Comput Sci 66(3):273–287

    Article  MathSciNet  MATH  Google Scholar 

  • Kobuchi Y (1987) A note on symmetrical cellular spaces. Inf Process Lett 25(6):413–415

    Article  MathSciNet  MATH  Google Scholar 

  • Kosaraju SR (1979) Fast parallel processing array algorithms for some graph problems (preliminary version). In ACM conference record of the eleventh annual ACM symposium on theory of computing: papers presented at the symposium, Atlanta, Georgia, ACM Press, New York, 30 April–2 May 1979, pp 231–236

    Google Scholar 

  • Klein A, Kutrib M (2003) Fast one-way cellular automata. Theor Comput Sci 295(1–3):233–250

    Article  MathSciNet  MATH  Google Scholar 

  • Kutrib M (2001) Automata arrays and context-free languages. In Where mathematics, computer science, linguistics and biology meet, Kluwer, Dordrecht, The Netherlands, pp 139–148

    Google Scholar 

  • Levialdi S (1972) On shrinking binary picture patterns. Commun ACM 15(1):7–10

    Article  MATH  Google Scholar 

  • Mazoyer J, Reimen N (1992) A linear speed-up theorem for cellular automata. Theor Comput Sci 101(1):59–98

    Article  MathSciNet  MATH  Google Scholar 

  • Okhotin A (2002) Automaton representation of linear conjunctive languages. In International conference on developments in language theory (DLT), LNCS, vol 6. Kyoto, Japan

    Google Scholar 

  • Poupet V (2005) Cellular automata: real-time equivalence between one-dimensional neighborhoods. In Diekert V, Durand B (eds) STACS 2005, 22nd annual symposium on theoretical aspects of computer science, Stuttgart, Germany, February 24–26, 2005, Proceedings, vol 3404 of Lecture Notes in Computer Science. Springer, pp 133–144

    Google Scholar 

  • Poupet V (2007) A padding technique on cellular automata to transfer inclusions of complexity classes. In Diekert V, Volkov MV, Voronkov A (eds) Second international symposium on computer science in Russia, vol 4649 of Lecture Notes in Computer Science. Springer, pp 337–348

    Google Scholar 

  • Rosenberg AL (1967) Real-time definable languages. J ACM 14(4):645–662

    Article  MATH  Google Scholar 

  • Savage C (1988) Recognizing majority on a one-way mesh. Inf Process Lett 27(5):221–225

    Article  MathSciNet  Google Scholar 

  • Smith AR III (1971) Simple computation-universal cellular spaces. J ACM 18(3):339–353

    Article  MATH  Google Scholar 

  • Smith AR III (1972) Real-time language recognition by one-dimensional cellular automata. J Comput Syst Sci 6:233–253

    Article  MATH  Google Scholar 

  • Szwerinski H (1985) Symmetrical one-dimensional cellular spaces. Inf Control 67(1–3):163–172

    Google Scholar 

  • Terrier V (1995) On real time one-way cellular array. Theor Comput Sci 141(1–2):331–335

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (1996) Language not recognizable in real time by one-way cellular automata. Theor Comput Sci 156(1–2):281–285

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (1999) Two-dimensional cellular automata recognizer. Theor Comput Sci 218(2):325–346

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (2003a) Characterization of real time iterative array by alternating device. Theor Comput Sci 290(3):2075–2084

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (2003b) Two-dimensional cellular automata and deterministic on-line tessalation automata. Theor Comput Sci 301(1–3):167–186

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (2004) Two-dimensional cellular automata and their neighborhoods. Theor Comput Sci 312(2–3): 203–222

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (2006a) Closure properties of cellular automata. Theor Comput Sci 352(1–3):97–107

    Article  MathSciNet  MATH  Google Scholar 

  • Terrier V (2006b) Low complexity classes of multidimensional cellular automata. Theor Comput Sci 369(1–3):142–156

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Terrier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Terrier, V. (2012). Language Recognition by Cellular Automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_4

Download citation

Publish with us

Policies and ethics