Niching in Evolutionary Algorithms | SpringerLink
Skip to main content

Niching in Evolutionary Algorithms

  • Reference work entry
Handbook of Natural Computing

Abstract

Niching techniques are the extension of standard evolutionary algorithms (EAs) to multi-modal domains, in scenarios where the location of multiple optima is targeted and where EAs tend to lose population diversity and converge to a solitary basin of attraction. The development and investigation of EA niching methods have been carried out for several decades, primarily within the branches of genetic algorithms (GAs) and evolution strategies (ES). This research yielded altogether a long list of algorithmic approaches, some of which are bio-inspired by various concepts of organic speciation and ecological niches, while others are more computational-oriented. This chapter will lay the theoretical foundations for niching, from the perspectives of biology as well as optimization, provide a summary of the main contemporary niching techniques within EAs, and discuss the topic of experimental methodology for niching techniques. This will be accompanied by the discussion of specific case-studies, including the employment of the popular covariance matrix adaptation ES within a niching framework, the application to real-world problems, and the treatment of the so-called niche radius problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 128699
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 128699
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamidis P (1994) Review of parallel genetic algorithms bibliography. Tech. rep., Automation and Robotics Lab., Dept. of Electrical and Computer Eng., Aristotle University of Thessaloniki, Greece

    Google Scholar 

  • Aichholzer O, Aurenhammer F, Brandtstätter B, Ebner T, Krasser H, Magele C (2000) Niching evolution strategy with cluster algorithms. In: Proceedings of the 9th biennial IEEE conference on electromagnetic field computations. IEEE Press, New York

    Google Scholar 

  • Ando S, Sakuma J, Kobayashi S (2005) Adaptive isolation model using data clustering for multimodal function optimization. In: Proceedings of the 2005 conference on genetic and evolutionary computation, GECCO 2005. ACM, New York, pp 1417–1424

    Google Scholar 

  • Angus D (2006) Niching for population-based ant colony optimization. In: Second international conference on e-science and grid technologies (e-science 2006), December 4–6, 2006, Amsterdam, The Netherlands, IEEE Computer Society, p 115

    Google Scholar 

  • Auger A, Hansen N (2005a) A restart CMA evolution strategy with increasing population size. In: Proceedings of the 2005 congress on evolutionary computation CEC 2005. IEEE Press, Piscataway, NJ, pp 1769–1776

    Google Scholar 

  • Auger A, Hansen N (2005b) Performance evaluation of an advanced local search evolutionary algorithm. In: Proceedings of the 2005 congress on evolutionary computation CEC 2005. IEEE Press, Piscataway, NJ, pp 1777–1784

    Google Scholar 

  • Avigad G, Moshaiov A, Brauner N (2004) Concept-based interactive brainstorming in engineering design. J Adv Comput Intell Intell Informatics 8(5): 454–459

    Google Scholar 

  • Avigad G, Moshaiov A, Brauner N (2005) Interactive concept-based search using MOEA: the hierarchical preferences case. Int J Comput Intell 2(3):182–191

    Google Scholar 

  • Bäck T (1994) Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In: Michalewicz Z, Schaffer JD, Schwefel HP, Fogel DB, Kitano H (eds) Proceedings of the first IEEE conference on evolutionary computation (ICEC’94). Orlando FL. IEEE Press, Piscataway, NJ, pp 57–62

    Chapter  Google Scholar 

  • Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York

    MATH  Google Scholar 

  • Bartz-Beielstein T (2006) Experimental research in evolutionary computation – the new experimentalism. Natural computing series. Springer, Berlin

    MATH  Google Scholar 

  • Beasley D, Bull DR, Martin RR (1993) A sequential niche technique for multimodal function optimization. Evolut Comput 1(2):101–125

    Article  Google Scholar 

  • Beyer HG (1999) On the dynamics of GAs without selection. In: Banzhaf W, Reeves C (eds) Foundations of genetic algorithms 5. Morgan Kaufmann, San Francisco, CA, pp 5–26

    Google Scholar 

  • Beyer HG, Schwefel HP (2002) Evolution strategies a comprehensive introduction. Nat Comput Int J 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  • Beyer HG, Brucherseifer E, Jakob W, Pohlheim H, Sendhoff B, To TB (2002) Evolutionary algorithms - terms and definitions. http://ls11-www.cs.uni-dortmund.de/people/beyer/EA-glossary/

  • Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev 2:353–373

    Article  Google Scholar 

  • Bradshaw A (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Branke J (2001) Evolutionary optimization in dynamic environments. Kluwer, Norwell, MA

    Google Scholar 

  • Brits R, Engelbrecht AP, Bergh FVD (2002) A niching particle swarm optimizer. In: The fourth Asia-Pacific conference on simulated evolution and learning (SEAL2002). Singapore, pp 692–696

    Google Scholar 

  • Cavicchio D (1970) Adaptive search using simulated evolution. Ph.D. thesis, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Cioppa AD, Stefano CD, Marcelli A (2004) On the role of population size and niche radius in fitness sharing. IEEE Trans Evolut Comput 8(6):580–592

    Article  Google Scholar 

  • Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multiobjective problems. Springer, Berlin

    Google Scholar 

  • Coello Coello CA (1999) A survey of constraint handling techniques used with evolutionary algorithms. Tech. Rep. Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada. Xalapa, Veracruz, México

    Google Scholar 

  • Cristiano JJ, White CC, Liker JK (2001) Application of multiattribute decision analysis to quality function deployment for target setting. IEEE Trans Syst Man Cybern Part C 31(3):366–382

    Article  Google Scholar 

  • Darwin CR (1999) The origin of species: by means of natural selection or the preservation of favoured races in the struggle for life. Bantam Classics, New York

    Google Scholar 

  • De Jong KA (1975) An analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  • Deb K, Goldberg DE (1989) An investigation of niche and species formation in genetic function optimization. In: Proceedings of the third international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 42–50

    Google Scholar 

  • Deb K, Spears WM (1997) Speciation methods. In: Bäck T, Fogel D, Michalewicz Z (eds) The handbook of evolutionary computation. IOP Publishing and Oxford University Press, Bristol

    Google Scholar 

  • Deb K, Tiwari S (2005) Omni-optimizer: a procedure for single and multi-objective optimization. In: Evolutionary multi-criterion optimization, third international conference, EMO 2005, Lecture notes in computer science, vol 3410. Springer, Guanajuato, Mexico, pp 47–61

    Google Scholar 

  • Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge, MA

    Book  MATH  Google Scholar 

  • Doye J, Leary R, Locatelli M, Schoen F (2004) Global optimization of Morse clusters by potential energy transformations. INFORMS J Comput 16(4): 371–379

    Article  MATH  Google Scholar 

  • Engelbrecht A (2005) Fundamentals of computational swarm intelligence. New York

    Google Scholar 

  • Fisher RA (1922) Darwinian evolution of mutations. Eugen Rev 14:31–34

    Google Scholar 

  • Fogel LJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  • Freeman S, Herron JC (2003) Evolutionary analysis. Benjamin Cummings, 3rd edn. Redwood City, CA

    Google Scholar 

  • Gan J, Warwick K (2001) Dynamic niche clustering: a fuzzy variable radius niching technique for multimodal optimisation in GAs. In: Proceedings of the 2001 congress on evolutionary computation CEC2001, IEEE Press, COEX, World Trade Center, 159 Samseong-dong. Gangnam-gu, Seoul, Korea, pp 215–222

    Google Scholar 

  • van der Goes V, Shir OM, Bäck T (2008) Niche radius adaptation with asymmetric sharing. In: Parallel problem solving from nature – PPSN X, Lecture notes in computer science, vol 5199. Springer, pp 195–204

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  • Goldberg DE, Richardson J (1987) Genetic algorithms with sharing for multimodal function optimization. In: Proceedings of the second international conference on genetic algorithms and their application. Lawrence Erlbaum, Mahwah, NJ, pp 41–49

    Google Scholar 

  • Grosso PB (1985) Computer simulations of genetic adaptation: parallel subcomponent interaction in a multilocus model. Ph.D. thesis, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Hanagandi V, Nikolaou M (1998) A hybrid approach to global optimization using a clustering algorithm in a genetic search framework. Comput Chem Eng 22(12):1913–1925

    Article  Google Scholar 

  • Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolut Comput 9(2):159–195

    Article  Google Scholar 

  • Hansen N, Ostermeier A, Gawelczyk A (1995) On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation. In: Proceedings of the sixth international conference on genetic algorithms (ICGA6). Morgan Kaufmann, San Francisco, CA, pp 57–64

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, NJ, USA

    MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. The University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Igel C, Suttorp T, Hansen N (2006) A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM, New York, pp 453–460

    Google Scholar 

  • Jelasity M (1998) UEGO, an abstract niching technique for global optimization. In: Parallel problem solving from nature - PPSN V, Lecture notes in computer science, vol 1498. Springer, Amsterdam, pp 378–387

    Google Scholar 

  • Kennedy J, Eberhart R (2001) Swarm intelligence. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kramer O, Schwefel HP (2006) On three new approaches to handle constraints within evolution strategies. Nat Comput Int J 5(4):363–385

    Article  MathSciNet  MATH  Google Scholar 

  • Li R, Eggermont J, Shir OM, Emmerich M, Bäck T, Dijkstra J, Reiber J (2008) Mixed-integer evolution strategies with dynamic niching. In: Parallel problem solving from nature - PPSN X, Lecture notes in computer science, vol 5199. Springer, pp 246–255

    Google Scholar 

  • Lunacek M, Whitley D (2006) The dispersion metric and the CMA evolution strategy. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2006. ACM, New York, pp 477–484

    Google Scholar 

  • Lunacek M, Whitley D, Sutton A (2008) The impact of global structure on search. In: Parallel problem solving from nature - PPSN X, Lecture notes in computer science, vol 5199. Springer, pp 498–507

    Google Scholar 

  • Mahfoud SW (1995a) Niching methods for genetic algorithms. Ph.D. thesis, University of Illinois at Urbana Champaign, IL

    Google Scholar 

  • Mahfoud SW (1995b) A comparison of parallel and sequential niching methods. In: Eshelman L (ed) Proceedings of the sixth international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA, pp 136–143

    Google Scholar 

  • Martin W, Lienig J, Cohoon J (1997) Island (migration) models: evolutionary algorithms based on punctuated equilibria. In: Bäck T, Fogel DB, Michalewicz Z (eds) Handbook of evolutionary computation. Oxford University Press, New York, and Institute of Physics, Bristol, pp C6.3:1–16

    Google Scholar 

  • McPheron BA, Smith DC, Berlocher SH (1988) Genetic differences between host races of Rhagoletis pomonella. Nature 336:64–66

    Article  Google Scholar 

  • Miller B, Shaw M (1996) Genetic algorithms with dynamic niche sharing for multimodal function optimization. In: Proceedings of the 1996 IEEE international conference on evolutionary computation (ICEC’96). New York, pp 786–791

    Google Scholar 

  • Ostermeier A, Gawelczyk A, Hansen N (1993) A derandomized approach to self adaptation of evolution strategies. Tech. rep., TU Berlin

    Google Scholar 

  • Ostermeier A, Gawelczyk A, Hansen N (1994) Step-size adaptation based on non-local use of selection information. In: Parallel problem solving from nature - PPSN III, Lecture notes in computer science, vol 866. Springer, Berlin, pp 189–198

    Google Scholar 

  • Parrott D, Li X (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. Evolut Comput, IEEE Trans 10(4): 440–458, doi: 10.1109/TEVC.2005.859468

    Article  Google Scholar 

  • Petrowski A (1996) A clearing procedure as a niching method for genetic algorithms. In: Proceedings of the 1996 IEEE international conference on evolutionary computation (ICEC’96). New York, pp 798–803

    Google Scholar 

  • Preuss M (2006) Niching prospects. In: Proceedings of the international conference on bioinspired optimization methods and their applications, BIOMA 2006. Jožef Stefan Institute, Slovenia, pp 25–34

    Google Scholar 

  • Preuss M (2007) Reporting on experiments in evolutionary computation. Tech. Rep. CI-221/07, University of Dortmund, SFB 531

    Google Scholar 

  • Ramalhinho-Lourenco H, Martin OC, Stützle T (2000) Iterated local search. Economics Working Papers 513, Department of Economics and Business, Universitat Pompeu Fabra

    Google Scholar 

  • Scheiner SM, Goodnight CJ (1984) The comparison of phenotypic plasticity and genetic variation in populations of the grass Danthonia spicata. Evolution 38(4):845–855

    Article  Google Scholar 

  • Schönemann L, Emmerich M, Preuss M (2004) On the extinction of sub-populations on multimodal landscapes. In: Proceedings of the international conference on bioinspired optimization methods and their applications, BIOMA 2004. Jožef Stefan Institute, Slovenia, pp 31–40

    Google Scholar 

  • Shir OM (2008) Niching in derandomized evolution strategies and its applications in quantum control. Ph.D. thesis, Leiden University, The Netherlands

    Google Scholar 

  • Shir OM, Bäck T (2005a) Dynamic niching in evolution strategies with covariance matrix adaptation. In: Proceedings of the 2005 congress on evolutionary computation CEC-2005. IEEE Press, Piscataway, NJ, pp 2584–2591

    Google Scholar 

  • Shir OM, Bäck T (2005b) Niching in evolution strategies. Tech. Rep. TR-2005-01, LIACS, Leiden University

    Google Scholar 

  • Shir OM, Bäck T (2006) Niche radius adaptation in the CMA-ES niching algorithm. In: Parallel problem solving from nature - PPSN IX, Lecture notes in computer science, vol 4193. Springer, pp 142–151

    Google Scholar 

  • Shir OM, Bäck T (2008) Niching with derandomized evolution strategies in artificial and real-world landscapes. Nat Comput Int J (2008), doi: 10.1007/s11047-007-9065-5

    Google Scholar 

  • Shir OM, Beltrani V, Bäck T, Rabitz H, Vrakking MJ (2008) On the diversity of multiple optimal controls for quantum systems. J Phys B At Mol Opt Phys 41(7):(2008). doi: 10.1088/0953-4075/41/7/074021

    Google Scholar 

  • Shir OM, Emmerich M, Bäck T (2010) Adaptive niche-radii and niche-shapes approaches for niching with the CMA-ES. Evolut Comput 18(1):97–126. doi: 10.1162/evco.2010.18.1.18104

    Google Scholar 

  • Singh G, Deb K (2006) Comparison of multi-modal optimization algorithms based on evolutionary algorithms. In: Proceedings of the 2006 annual conference on genetic and evolutionary computation, GECCO 2006. ACM Press, New York, pp 1305–1312

    Google Scholar 

  • Smith RE, Bonacina C (2003) Mating restriction and niching pressure: results from agents and implications for general EC. In: Proceedings of the 2003 conference on genetic and evolutionary computation, GECCO 2003, Lecture notes on computer science, vol 2724. Springer, Chicago, IL, pp 1382–1393

    Google Scholar 

  • Spears WM (1994) Simple subpopulation schemes. In: Proceedings of the 3rd annual conference on evolutionary programming, World Scientific. San Diego, CA, Singapore, pp 296–307

    Google Scholar 

  • Stoean C, Preuss M, Gorunescu R, Dumitrescu D (2005) Elitist generational genetic chromodynamics – a new radii-based evolutionary algorithm for multimodal optimization. In: Proceedings of the 2005 congress on evolutionary computation (CEC’05). IEEE Press, Piscataway NJ, pp 1839–1846

    Google Scholar 

  • Stoean C, Preuss M, Stoean R, Dumitrescu D (2007) Disburdening the species conservation evolutionary algorithm of arguing with radii. In: Proceedings of the genetic and evolutionary computation conference, GECCO 2007. ACM Press, New York, pp 1420–1427

    Google Scholar 

  • Streichert F, Stein G, Ulmer H, Zell A (2003) A clustering based niching EA for multimodal search spaces. In: Proceedings of the international conference evolution artificielle, Lecture notes in computer science, vol 2936. Springer, Heidelberg, Berlin, pp 293–304

    Google Scholar 

  • Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Tech. rep., Nanyang Technological University, Singapore

    Google Scholar 

  • Törn A, Zilinskas A (1987) Global optimization, Lecture notes in computer science, vol 350. Springer, Berlin

    Google Scholar 

  • Tsui K (1992) An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans 24:44–57

    Article  Google Scholar 

  • Ursem RK (1999) Multinational evolutionary algorithms. In: Proceedings of the 1999 congress on evolutionary computation (CEC 1999). IEEE Press, Piscataway NJ, pp 1633–1640

    Google Scholar 

  • Whitley D, Mathias KE, Rana SB, Dzubera J (1996) Evaluating evolutionary algorithms. Artif Intell 85(1–2):245–276

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Google Scholar 

  • Yin X, Germany N (1993) A fast genetic algorithm with sharing using cluster analysis methods in multimodal function optimization. In: Proceedings of the international conference on artificial neural nets and genetic algorithms, Innsbruck. Austria, 1993, Springer, pp 450–457

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ofer M. Shir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Shir, O.M. (2012). Niching in Evolutionary Algorithms. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_32

Download citation

Publish with us

Policies and ethics